
WASHINGTON UNIVERSITY IN ST. LOUIS

McKelvey School of Engineering
Department of Electrical & Systems Engineering

Dissertation Examination Committee:
Andrew Clark, Chair

Ioannis Kantaros
Bruno Sinopoli

Yevgeniy Vorobeychik
Shen Zeng
Ning Zhang

Resilient Safe Control of Autonomous Systems
by

Hongchao Zhang

A dissertation presented to
the McKelvey School of Engineering

of Washington University in
partial fulfillment of the

requirements for the degree
of Doctor of Philosophy

August 2025
St. Louis, Missouri

© 2025, Hongchao Zhang

Table of Contents

List of Figures . v

List of Tables . ix

Acknowledgments . xi

Abstract . xiii

Chapter 1: Introduction . 1
1.1 Safe Control of Autonomous Systems . 2
1.2 Resilient Safe Control . 4
1.3 Contribution of this Thesis . 5

1.3.1 Neural CBF for Deterministic Systems 5
1.3.2 Neural CBF for Stochastic Systems 6
1.3.3 Resilient Safe Control under Low-Dimensional Sensor Faults 7
1.3.4 Resilient Safe Control under LiDAR Perception Attacks 8

1.4 Structure of Thesis . 9

Chapter 2: Neural Control Barrier Functions For Deterministic Systems 12
2.1 Related Work . 14

2.1.1 Verification of NCBFs . 15
2.1.2 Synthesis of Verifiable Safe Control 16

2.2 Problem Formulation . 17
2.2.1 System Model . 17
2.2.2 Safety and Control Barrier Functions 17
2.2.3 Problem Formulation . 18

2.3 Exact Conditions for Safety . 18
2.3.1 Safety Violation due to Non-differentiability 19
2.3.2 ReLU Neural Control Barrier Function 21
2.3.3 Generalized Nagumo’s Theory for ReLU NCBF 24

2.4 Decomposition of ReLU NCBF . 28
2.4.1 VNN-based Search Algorithm . 28
2.4.2 Neural Breadth-First-Search . 30

2.5 Verification . 36

ii

2.5.1 Verification of Hyperplanes . 36
2.5.2 Verification of Hinges . 37
2.5.3 Efficient Verification . 39

2.6 Experiment . 42
2.6.1 Experiment Settings . 42
2.6.2 LiRPA-based Verification Results . 45
2.6.3 Exact Efficient Verification Results 47

2.7 NCBF Synthesis with Efficient Exact Verification 49
2.7.1 Overall Formulation . 49
2.7.2 Loss Function Design and NCBF Training 50
2.7.3 SEEV Evaluation . 52

2.8 Conclusion . 56

Chapter 3: Neural Control Barrier Functions For Stochastic Systems . . 58
3.1 Preliminaries . 59

3.1.1 System Model . 59
3.1.2 Preliminaries on Stochastic Processes 60
3.1.3 Stochastic Control Barrier Functions 62
3.1.4 Preliminary Results . 64

3.2 Smooth Stochastic Neural Control Barrier Functions 66
3.2.1 Smooth SNCBF Verifiable Synthesis 67
3.2.2 Smooth SNCBF Verification and Synthesis 72

3.3 Rectified Linear Unit Stochastic Control Barrier Functions 77
3.3.1 Single-Hidden-Layer ReLU Stochastic NCBF 78
3.3.2 ReLU SNCBF Verification and Synthesis 82

3.4 Experiments . 88
3.4.1 Experiment Settings . 88
3.4.2 Experiment Results . 90

3.5 Conclusion . 94

Chapter 4: Resilient Safe Control under Low-Dimensional Sensor Faults 95
4.1 Related Work . 96
4.2 Preliminaries . 97

4.2.1 System Model . 98
4.2.2 Background and Preliminary Results 99

4.3 Safe Control Under Sensor Faults and Attacks 103
4.3.1 Overview of the Approach . 103
4.3.2 Sensor Fault Pattern Formulation . 104
4.3.3 Sensor FTC Strategy Definition . 105
4.3.4 Feasibility Verification . 110

4.4 Joint Safety and Stability Under Sensor Faults and Attacks 116
4.4.1 HOSCBF-CLF . 116
4.4.2 HOSCBF-CLF Construction . 120

iii

4.4.3 FT-CBF Evaluation . 122
4.5 Fault Tolerant NCBF . 124

4.5.1 Overview of Proposed Solution . 125
4.5.2 Synthesis of NCBF . 127
4.5.3 Synthesis of FT-NCBF . 130
4.5.4 Safety Guarantee of Proposed Approach 131
4.5.5 FT-NCBF Evaluation . 132

4.6 Conclusion . 135

Chapter 5: Resilient Safe Control under LiDAR Perception Attacks . . . 137
5.1 Related Work . 139
5.2 Resilient Safe Control of 2D-LiDAR-based Systems 140

5.2.1 Preliminaries . 141
5.2.2 2D LiDAR Observation and Threat Model 142
5.2.3 2D-LiDAR Fault Tolerant Safe Control 144
5.2.4 Fault-Tolerant Control Barrier Certificate 150
5.2.5 2D-LiDAR FTC Evaluation . 152

5.3 Resilient Safe Control of 3D-LiDAR-based Systems 154
5.3.1 3D LiDAR Fault Detection and Safe Control 156
5.3.2 3D-LiDAR FTC Evaluation . 166

5.4 Conclusion . 171

Chapter 6: Conclusion . 175
6.1 Advancing Verifiable Safety in Learning-Enabled Systems (Research Thrust 1) 176
6.2 Enhancing Resilient Safe Control in Adversarial Environments (Research

Thrust 2) . 177

References . 180

iv

List of Figures

Figure 2.1: Comparison of optimization-based controller using trained NCBF bθ and
unsafe NCBF bc. 21

Figure 2.2: Illustration of proposed coarser-to-finer searching method. Hyper-cubes
that intersect the safety boundaries are marked in red. When all pos-
sible activation sets are listed, we can identify exact activation set and
intersections. 28

Figure 2.3: Overview of the Efficient Exact Verifier for ReLU NCBFs 41

Figure 2.4: Comparison of NCBFs that pass and fail the proposed verification. We
show 0-level set boundary in blue, initial region in green and the unsafe
region in red. (a) and (b) visualize NCBFs for Darboux. (c) and (d) shows
projection of NCBFs for Obstacle Avoidance. 45

Figure 2.5: SEEV: Synthesis with Efficient Exact Verifier for ReLU NCBF 50

Figure 2.6: Effects of boundary regularization (r) on activation sets along the boundary.
The figures show the results from a neural network with 4 layers of 8
hidden units, applied to the Spacecraft case. The surface represents the
first two dimensions with the last four dimensions fixed at 0. Increasing r
results in more organized boundary activation sets. 52

Figure 3.1: Workflow of the synthesis with verification in the loop. 74

Figure 3.2: This figure presents the experimental results on the inverted pendulum
system. Fig. 3.2a visualizes of B(x) over X . Blue and red regions denote
the safe region (B ≥ −ψ∗) and the unsafe region (B < ψ∗), respectively.
The initial safety region boundary and unsafe region boundary is denoted
by black boxes. We observe that the boundary of trained SNCBF (black
dots) successfully separate the unsafe and safe region. Fig. 3.2b shows the
3D plot of B(x) over X . Fig. 3.2c presents trajectories initiating inside
the safe set following SNCBF-QP, following different reference controllers 91

v

Figure 3.3: Proposed safe control comparison among different reaction distance. We
let the vehicle to adjust its orientation to maneuver in its lane. We show
three trajectories to demonstrate our proposed SNCBF-based controller
under different initial state, namely, 6, 8 and 12 meter away from the
pedestrian, respectively. Three trajectories of the vehicle under control
shows our proposed method succeeds in maneuvering the vehicle to avoid
the pedestrian. 92

Figure 3.4: Comparison of coverage and training time across Baseline, Smooth and
ReLU SNCBF Synthesis. Error bars indicate standard deviations across 5
seeds. 93

Figure 4.1: Schematic illustration of our proposed approach for system under sensor
faults and attacks. 103

Figure 4.2: Comparison of actual trajectory and Lyapunov function between HOSCBF-
CLF and baseline on WMR system under sensor false data injection attacks.
In (a), the baseline entered unsafe region while proposed method remains
safe and converge to goal region. In (b), the Lyapunov function of real
states decreases and converges to zero. 122

Figure 4.3: This figure presents the experimental results on obstacle avoidance of an
autonomous mobile robot. Fig. 4.3a presents the values of loss function,
Lf(T), and Lc(T). The loss function decreases towards zero during the
training process. Fig. 4.3b shows the zero-level set of Dθ corresponding to
the FT-NCBF bθ. The set Dθ does not overlap with the unsafe region in
red color. Fig. 4.3c presents the trajectory of the mobile robot when using
control policies obtained by our approach and the baseline approach. We
observe that our approach guarantees safety whereas the baseline crashes
with the pedestrian. 132

Figure 4.4: This figure presents the experimental results on spacecraft rendezvous
problem. In Fig. 4.4a, we demonstrate that the value of loss function in
Eq. (4.47) quickly converges to zero during training. Fig. 4.4b presents
the zero-level set of Dθ, which never overlaps with the unsafe region in
red color. Fig. 4.4c simulates the trajectories of the chaser satellite using
our approach and the baseline. We observe that our approach allows the
chaser satellite to maintain a proper distance to the target satellite (green
curve), whereas the baseline fails (red curve). 133

vi

Figure 5.1: Fault tolerant estimation for LiDAR-based system removes conflicting
state estimations by comparing estimations of proprioceptive sensors with
additional information from exteroceptive sensors measurements. 146

Figure 5.2: Comparison between the estimated LiDAR observations (blue lines) and
actual LiDAR observations (pink lines). Fig. 5.2a to 5.2b compares the
estimated and actual LiDAR observations under attack Scenario I (INS1
compromised). The estimate based on INS1 deviates from the actual scan,
causing the compromised sensor INS1 to become untrusted. Fig. 5.2c to
5.2d compares the estimated and actual LiDAR observations under attack
Scenario II (INS1 and LiDAR compromised). Fig. 5.2a and Fig. 5.2c
estimate the LiDAR scan using the compromised measurements from INS1.
Fig. 5.2b and Fig. 5.2d estimate the LiDAR scan using the measurements
from INS2. The proposed approach removes the spoofed obstacle and
aligns with the non-compromised sensor INS2. 152

Figure 5.3: Comparison of trajectories of the UAV when controlled using our proposed
approach and the baseline. 153

Figure 5.4: Illustration of three attack types against LiDAR-based perception. Each
attack type leaves a trace in the raw data that can be detected using our
proposed approach. 155

Figure 5.5: Schematic illustration of the proposed approach: to identify attacks marked
in red, Agent A requests point cloud from nearby agents, i.e., Agent j.
Then, FDII module takes UA,Uj,Obk(xA, SA) and outputs detected attack
type and updated safe region C. Finally, controller output safe control
input u. 157

Figure 5.6: Decision tree of the FDII module: in the blue box, we iterate over de-
tectable obstacles to detect faults. Then we remove points contained in
bounding boxes and pass the remaining point cloud to the green box to
identify undetectable obstacles. 160

Figure 5.7: FDII simulation settings and results of attack-NEO case 168

Figure 5.8: Augmented LiDAR FDII simulation settings and results: We demonstrate
settings in the first row, the corresponding point cloud of joint perception
of two agents and the candidate unsafe region in the second and third row,
respectively. We list attack-free, PRA2 and PRA3 in the three columns
from left to right, respectively. 169

vii

Figure 5.9: MPC drove CARLA vehicle from start (−14.34, 137.05) to goal (−5.00, 135.25).
The agent managed to avoid detected unsafe region while tracking the
given reference point. 171

viii

List of Tables

Table 2.1: Comparison of verification run-time of NCBF in seconds. The table
contains the dimension n, network architecture with σ denoting ReLU, the
number of activation sets N and run-time of proposed method including
time of enumerating, verification and total run-time denoted as te, tv and
T , respectively. We compare with the run-time of dReal (TdReal) and Z3
(TZ3). 46

Table 2.2: Comparison of verification run-time of NCBF in seconds. We denote the
run-time as ‘UTD’ when the method is unable to be directly used for
verification. 47

Table 2.3: Comparison of verification run-time of NCBF in seconds. We denote the
run-time as ‘UTD’ when the method is unable to be directly used for
verification. 48

Table 2.4: Comparison of N the number of boundary hyperplanes and C coverage of
the safe region D of NCBF trained with and without boundary hyperplane
regularizer denoted with subscripts r and o. 53

Table 2.5: Success rates (sr) and minimum epochs required for certification with
and without Counter Example (CE) guided training for different network
structures on Darboux and hi-ord8 systems. 54

Table 2.6: Hyperparameters of CBF synthesis. 55

Table 2.7: Ablation study for training hyperparameters. In each table, the bold lines
indicate the baseline setting. SR: the success rate among runs with three
random seeds. ME: the average first training epoch when a valid NCBF
is obtained. N: the average number of boundary hyperplanes. 55

Table 3.1: ReLU SNCBF Synthesis Comparison . 92

ix

Table 3.2: Comparison of Baseline, Smooth and ReLU SNCBF Synthesis. The
smooth SNCBF is the proposed verifiable synthesis in Algorithm 5. The
ReLU SNCBF is synthesized by VITL with the efficient verifier proposed
in Algorithm 7. 93

x

Acknowledgments

Scientists are indeed like backpackers: there is no definitive end, only new beginnings. Ph.D.
is my first long journey exploring the world full of wonderful discoveries and innovations.
Throughout this journey, many people in my life have given me the support, faith, and
confidence that made this accomplishment possible. I am deeply grateful to you all.

First, I would like to express my sincere gratitude to my advisor, Prof. Andrew Clark, for
his guidance and support in my Ph.D. He provides me with his invaluable guidance and
unwavering encouragement. His insightful feedback has helped me recognize and overcome
my weaknesses. More importantly, he offers me freedom to explore the multi-disciplinary
areas, including learning-enabled control, robotics, and security of cyber-physical systems.

I want to thank the rest of my dissertation committee: Prof. Bruno Sinopoli, Prof. Yevgeniy
Vorobeychik, Prof. Ning Zhang Prof. Ioannis Kantaros and Prof. Shen Zeng, for their
insightful suggestions and expert guidance. Their collective expertise and support facilitated
my exploration of multi-disciplinary areas. Their research wisdom and insightful perspectives
also encouraged me to think outside the box.

All members of the Lab, past and present, have helped in various ways, including Dr. Qiqiang
Hou, Dr. Luyao Niu, Dr. Zhouchi Li, Mr. Shiyu Cheng, Mr. Chuanrui Jiang, Mr. Aobo
Lyu, and Mr. Jackson Cox. I also want to thank my collaborators, Prof. Sicun Gao, Dr.
Hongkai Dai, Prof. Radha Poovendran, Prof. Bhaskar Ramasubramanian, Prof. Pushpak
Jagtap, Prof. Shishir Kolathaya, Dr. Junlin Wu, Dr. Jinwen Wang, Dr, Ao Li, Dr. Dinuka
Sahabandu, Dr. Zhizhen Qin, and Dr. Manan Tayal. I also want to thank the ESE office, Mr.
Angel Algarin, Mr. Aaron Beagle, Dr. Stacia Burd, Ms. Allise Davis, and Ms. Madi Hester.

My gratitude goes to my family for their constant love, support, and patience. You have
always been my rock. To my wonderful wife, Zehui Jiang, thank you for your incredible
understanding, unwavering support, and endless encouragement. I wish to remember my
grandfather Fengming Zhang lovingly.

Finally, I would like to thank our sponsors for their generous support. This work was
supported by This work was supported by National Science Foundation grants CNS-1941670,

xi

CMMI-2418806, Office of Naval Research grant N00014-17-1-2946, and Air Force Office of
Scientific Research grant FA9550-22-1-0054.

Hongchao Zhang

Washington University in St. Louis
August 2025

xii

ABSTRACT OF THE DISSERTATION

Resilient Safe Control of Autonomous Systems

by

Hongchao Zhang

Doctor of Philosophy in Electrical Engineering

Washington University in St. Louis, 2025

Professor Andrew Clark, Chair

Asimov’s Three Laws of Robotics famously outlined fundamental safety principles governing

human-robot interaction. This foundational concept of safety is paramount for today’s

autonomous systems, such as robots, which possess inherent cyber-physical properties. With

the increasingly widespread application of autonomous systems in real-world environments,

the challenges facing research on formal safety verification have grown even more significant.

However, end-to-end verification of such complex, integrated systems remains an open and

formidable challenge due to their high dimensionality, nonlinearity, and the use of learning-

based components. This thesis approaches this challenge by pursuing verifiably safe autonomy

from two complementary directions: (i) safe control of learning-enabled systems providing

formal guarantees and (ii) resilient safe control that maintains formal safety guarantees under

extreme scenarios such as sensor faults and cyber-physical attacks.

The first half of this dissertation presents the formal verification of autonomous systems that

integrate learning-enabled components. It starts with the safety verification of neural control

barrier functions (NCBF) employing Rectified Linear Unit (ReLU) activation functions. By

leveraging a generalization of Nagumo’s theorem, we propose exact safety conditions for

deterministic systems. To manage computational complexity, we enhance the efficiency

of verification and synthesis using a VNN-based (Verification of Neural Networks) search

xiii

algorithm and a neural breadth-first search algorithm. We further propose the synthesis and

verification of safe control for stochastic systems.

The second half of this dissertation broadens the scope of end-to-end verification by explicitly

accounting for imperfections and perturbations. We first proposed Fault-Tolerant Stochastic

CBFs and NCBFs to provide safety guarantees for autonomous systems under state estimation

error caused by low-dimensional sensor faults and attacks. We then investigate the unique

challenges posed by Light Detection And Ranging (LiDAR) perception attacks. We propose

a fault detection, identification, and isolation mechanism for 2D and 3D LiDAR and provide

safe control under attacks.

xiv

Chapter 1

Introduction

An autonomous system is a system capable of performing tasks and making decisions
independently, without continuous human guidance [1]. These systems integrate sensors,
actuators, computational units, and software algorithms to perceive their environment, process
information, and execute actions to achieve specific objectives. Therefore, they are inherently
cyber-physical systems (CPS), characterized by the seamless integration of computational
algorithms and physical components. The physical components of autonomous systems
include sensors for perception (e.g., Inertial Motion Units, Global Positioning System, LiDAR,
cameras, radar), actuators for physical interaction (motors, hydraulic systems), and mechanical
structures providing physical integrity and mobility. These components collectively define the
dynamical behavior of the autonomous system, typically represented by differential equations
capturing the relationships among system states, inputs, and physical properties. The
cyber component encompasses state estimation algorithms, control policies, data processing
algorithms, and communication networks, collectively responsible for implementing the
decision-making and control tasks. Control policies leverage sensory data and state estimations
to issue commands to actuators, thus directly influencing the system’s physical behavior.

In recent years, autonomous systems, e.g., autonomous vehicles and AI-embodied robots,
have been increasingly deployed in real-world, safety-critical scenarios. These systems operate
in dynamic and uncertain environments, often in close interaction with human users [2].
To ensure public trust and prevent catastrophic failures, assured safety is paramount [3].
Achieving this requires not only the design of safe control policies but also formal verification
of the underlying control and perception modules. However, end-to-end verification of
such complex, integrated systems remains an open and formidable challenge due to their
high dimensionality, nonlinearity, and the use of learning-based components. This thesis
approaches this challenge by pursuing verifiably safe autonomy from two complementary
directions: (i) safe control of learning-enabled systems providing formal guarantees, and

1

(ii) resilient safe control that maintains formal safety guarantees under extreme scenarios
such as sensor faults and cyber-physical attacks. In what follows, we first provide a brief
overview of the safe control of autonomous systems. We then discuss the challenges of
safe learning-enabled systems, followed by a discussion of resilient safe control. Finally, we
summarize the contributions of this thesis and outline its structure.

1.1 Safe Control of Autonomous Systems

The increasing deployment of autonomous systems necessitates formally guaranteeing their safe
and reliable operation, as any safety violation can lead to catastrophic consequences, including
economic losses[4, 5], severe injuries, or loss of human lives [6]. The safety requirements of
these systems, with applications including medicine, energy, and robotics [7], have motivated
recent research to design safe control policies. Safety requirements can be formulated as
the positive invariance of a given safe region, meaning the system remains in the safe
region indefinitely [8]. Various approaches for safety-critical control have been proposed,
including Hamilton-Jacobi Reachability (HJR) analysis [9, 10, 11], Barrier certificates [12],
model predictive control [13], finite-state approximation [14] and Control Barrier Functions
(CBFs) [15]. Among those methods, CBFs have the advantage that they can be readily
integrated into existing control policies by adding linear constraints on the control input. Due
to their ease of implementation and compatibility with various safety and performance criteria
[16], CBF-based approaches have been applied in deterministic [8] and stochastic control
systems [17, 18, 19]. A CBF maps the system state to a scalar and serves as a constraint in
an optimization problem. The constraints ensure that the state remains inside the region
where the CBF is nonnegative, which is a subset of a given safe region. More recently, CBFs
have emerged as promising approaches to safe control, due to their compatibility with a wide
variety of control laws [8, 20, 18, 21, 22, 23, 24]. These optimization-based controllers are
usually formulated as Quadratic Programs (QPs), with CBF constraints, known as CBF-QPs.
CBF-QPs require known CBFs for the control system in a specific safe region. A CBF-based
optimization is proposed for systems with nominal controllers, known as a safety filter. The
optimization problem minimizes the norm of the additive control effort such that the overall
control input satisfies CBF conditions. Safety filters provide formal guarantees without
limitations on nominal control policies.

2

However, these CBFs are not always given and need to be synthesized. For control systems with
polynomial dynamics, CBF synthesis can be formulated as sum-of-squares (SOS) constrained
optimization problems [25, 26, 27]. Unfortunately, these SOS-based problems do not easily
scale to high-dimensional systems and are not directly applicable to systems with non-
polynomial dynamics, including learning-enabled robotic systems [28] and neural network
dynamical models [29, 30].

As artificial intelligence (AI) systems increase in size rapidly, acquire new capabilities, and are
deployed in safety-critical systems, their safety becomes extremely important. Autonomous
systems utilizing neural networks to reason and learn from data are known as learning-enabled
systems. Learning-enabled systems show great promise due to the uniform approximability of
neural networks; however, inherited from neural networks’ black-box nature, formal verification
is an open problem. Ensuring system safety requires more than improving accuracy, efficiency,
and scalability: it requires the representation of neural networks and generalized safety
certification of systems with neural networks integrated.

Safe reinforcement learning (RL) [31, 32, 33] has been proposed to ensure or maximize the
probability of remaining safe. However, the lack of guarantees of safe RL is an open problem
impeding the deployment of these methods on real-world applications. While control barrier
function (CBF)-based safety filters offer formal safety guarantees, polynomial CBFs often
struggle to scale to high-dimensional systems. This mismatch creates a fundamental tension:
the safety filter enforces provable safety, yet its capability is constrained when paired with a
learning-enabled nominal controller that is limited by the expressiveness of polynomial CBFs.

To address these limitations, Neural CBFs (NCBFs) [34, 23, 35] have been proposed to
represent CBFs with feed-forward Neural Networks (NNs) by exploiting the uniform ap-
proximability of NNs. NCBFs have shown substantial promise in applications including
robotic manipulation [23], navigation [36, 37], and flight control [38]. After synthesizing
an NCBF, the NCBF must be verified in order to ensure that the resulting CBF-QP is
feasible everywhere in the state space, and to ensure that the super-level-set of the NCBF
is contained in the safe region [39, 34]. Verification-In-The-Loop (VITL), also known as
Counterexample-guided synthesis, has been implemented in neural barrier certificates [40, 41]
and NCBF verification [42, 43]. VITL synthesis of NCBFs is dependent on an effective and
efficient verifier, which is an open problem due to the scalability issue of verifying a neural
network and its derivatives.

3

1.2 Resilient Safe Control

Autonomous systems rely on perception modules to estimate states, including their own
states as well as the environmental states. Perception modules develop this understanding
using data from sensors such as cameras, Global Positioning Systems, RADAR, and Light
Detection and Ranging (LiDAR) [3].

Sensor faults and malicious attacks provide inaccurate, arbitrary readings. These inaccurate
measurements bias estimates of the system state, leading to erroneous control signals that
drive the true system state to an unsafe operating point. Sensor faults and attacks can cause
arbitrary errors in the sensor measurements and system dynamics, which is challenging for
existing CBF-based approaches such as [44] that assume that noises and disturbances are
either bounded or come from a known probability distribution.

Countermeasures such as Fault-Tolerant Control (FTC) [45, 46] have been proposed to
accommodate faults, attacks and failures. Existing FTC approaches focus on maintaining
performance and do not provide provable safety guarantees. Countermeasures incorporating
disturbance observer-based CBF are proposed to ensure robust safety of systems with model
uncertainties [47, 48] and model-free safe reinforcement learning [49]. With the growing
attention on faults and attacks, safety guarantees on systems under faulty components or
adversarial environments have become an active research area.

Modeling and detection of sensor faults and attacks have been extensively studied [50, 51, 52].
Secure system state estimation using measurements from proprioceptive sensors has been
investigated in [53, 54]. Closed-loop safety-critical control under sensor faults and attacks has
been recently studied in [55, 56]. However, these approaches are applicable to CPS using only
proprioceptive sensors. When exteroceptive sensors such as LiDAR are adopted by CPS, the
impact of attacks on the output of the nonlinear filters used to process LiDAR measurements
are not incorporated into the aforementioned safety-critical control designs [55, 56], rendering
them less effective.

LiDARs, which measure the distances from the LiDAR transceiver to obstacles, provide a
360◦ view and a 2D or 3D representation, namely a point cloud, of the environment. Since
LiDAR perception has a significant impact on the safety-critical decisions of AVs, many
prior research efforts have been made to investigate the security of LiDAR perception. The

4

LiDAR perception can be compromised by relay attacks [57][58][59] and adversarial object
attacks [60][61]. In relay attacks, a relay spoofer injects adversarial points in the point cloud,
disturbs the outputs of the object detection algorithms, and either creates the perception of
a fake object or hides an existing object. In adversarial object attacks, a well-designed object
fools the object detection algorithms and makes itself undetectable. While sensor fusion-based
methods can partially mitigate the impact of LiDAR attacks [62], such methods can still be
thwarted by an adversary who can target multiple sensor modalities simultaneously.

1.3 Contribution of this Thesis

1.3.1 Neural CBF for Deterministic Systems

The key challenge for this class of NCBFs is that most methodologies for safety verification
are based on proving that the derivative of the barrier function is nonnegative at the boundary
of the safe region, and hence the barrier function remains nonnegative for all time. Since the
ReLU activation function is not continuously differentiable, this approach is inapplicable. We
resolve this challenge with the following contributions.

• We derive exact safety conditions for ReLU NCBFs by leveraging a generalization of
Nagumo’s theorem for proving invariance of sets with nonsmooth boundaries.

• We propose an algorithm to verify that an NCBF satisfies our derived safety conditions.
Our approach leverages the piece-wise linearity of ReLU neural networks and decomposes
the NCBF into hyperplanes and hinges. In order to mitigate the complexity of this
stage, we show that it suffices to consider the boundary of the safe region.

• We propose a VNN-based searching algorithm to identify boundary hyperplanes and
hinges by over-approximate the input-output relationship of the NCBF with Interval
Bound Propagation and linear relaxation. After decomposing the NCBF, we verify
safety by solving a set of nonlinear programs

We identify that the computational bottleneck of NCBF verification is the inherent requirement
of verifying each linear segment of the neural network. We mitigate this bottleneck by (i)

5

developing a training procedure that reduces the number of segments that must be verified
and (ii) constructing verification algorithms that efficiently enumerate the linear segments at
the safety boundary and exploit easily-checked sufficient conditions to reduce computation
time.

• Towards (i), we introduce a regularizer to the loss function that penalizes the dissimilarity
of activation patterns along the CBF boundary.

• Towards (ii), we propose a breadth-first search algorithm for efficiently enumerating
the boundary segments, as well as tight linear over-approximations of the nonlinear
optimization problems for verifying each segment.

• Moreover, we integrate the synthesis and verification components by incorporating
safety counterexamples returned by the safety verifier into the training dataset.

• Our simulation results demonstrate significant improvements in verification efficiency
and reliability across a range of benchmark systems.

1.3.2 Neural CBF for Stochastic Systems

The synthesis of Stochastic Neural CBFs (SNCBFs) requires additional verification to check
if the synthesized SNCBF is both correct and feasible for the given system dynamics and
safety constraints. The synthesis of SNCBFs is dependent on an effective and efficient verifier,
which is an open problem due to the scalability issue of verifying a neural network and its
derivatives. Furthermore, existing work primarily focuses on deterministic systems and leaves
stochastic NCBFs less studied.

To investigate this challenge, we propose a training framework to synthesize provably valid
NCBFs for continuous-time, stochastic systems. Our methodology establishes completeness
guarantees by deriving a validity condition, which ensures efficacy across the entire state
space with only a finite number of data points. We train the network robustly by enforcing
Lipschitz bounds on the neural network and its Jacobian and Hessian. We make the following
contributions towards synthesizing and verifying NCBFs for stochastic systems.

6

• We formulate the verification of smooth SNCBFs with twice-differentiable activation
functions as nonlinear programs that can be solved by Satisfiability Modulo Theories
(SMT) solvers.

• We introduce the Stochastic NCBF (SNCBF) with ReLU activation functions and
derive sufficient safety conditions using Tanaka’s formula.

• We utilize the piecewise linearity of ReLU NNs, formulate the verification of ReLU
SNCBFs as nonlinear programs and propose practical algorithms for efficient verification.

• We frame the Verification-In-The-Loop (VITL) synthesis with efficient verifiers for
both smooth and ReLU NCBFs synthesis. The VITL relaxes the dense sampling and
single-layer assumption of the smooth SNCBF.

• We validate our approach in three cases, namely, the inverted pendulum, Darboux, and
the unicycle model. The experiments illustrate that both smooth and ReLU SNCBFs
can output verifiably safe results while covering a larger safe subset compared to the
baseline approach of a Fault-Tolerant SNCBF without VITL.

1.3.3 Resilient Safe Control under Low-Dimensional Sensor Faults

Sensor faults and malicious attacks provide inaccurate, arbitrary readings. These inaccurate
measurements bias estimates of the system state, leading to erroneous control signals that
drive the true system state to an unsafe operating point. Existing FTC approaches focus on
maintaining performance and do not provide provable safety guarantees. To fill the blank,
we make the following specific contributions:

• We propose High-order Stochastic CBFs (HOSCBF) for the system with high relative
degree and propose FT-SCBFs with high order degree to ensure finite time safety
when sensor faults occur. We propose an SOS-based scheme to verify the feasibility of
constraints of FT-SCBFs with high relative degree.

• We compose HOSCBFs with Control Lyapunov Functions (CLFs) to provide joint
guarantees on safety and stability under sensor faults.

7

• We evaluate our approach via a case study. The proposed HOSCBF-CLF ensures safety
and convergence of a wheeled mobile robot (WMR) system in the presence of a sensor
attack.

• We propose FT-NCBFs for robotic systems under sensor faults and attacks. We derive
the necessary and sufficient conditions for FT-NCBFs to guarantee safety. Based on
the derived conditions, we develop a data-driven method to learn FT-NCBFs.

• We develop a fault-tolerant framework which utilizes our proposed FT-NCBFs for
safety-critical control synthesis. We prove that the synthesized control inputs guarantee
safety under all fault and attack patterns.

• We evaluate our approach using two case studies on the obstacle avoidance problem of
a mobile robot and the spacecraft rendezvous problem. We show that our approach
guarantees the robot to satisfy the safety constraint regardless of the faults and attacks,
whereas the baseline employing the existing NCBFs fails.

1.3.4 Resilient Safe Control under LiDAR Perception Attacks

Sensors have been shown to be vulnerable to faults and malicious attacks, under which
ensuring CPS safety becomes more challenging. Existing works are applicable to CPS using
only low-dimensional sensors. When high-dimensional sensors such as LiDAR are adopted
by CPS, the impact of attacks on the output of the nonlinear filters used to process LiDAR
measurements are not incorporated into the aforementioned safety-critical control designs,
rendering them less effective. Safety-critical control under LiDAR spoofing attacks is an open
problem. To address the problem, we make the following contributions.

• We propose a fault tolerant state estimation algorithm that is resilient to attacks against
proprioceptive sensors and 2D-LiDAR measurements. Our approach reconstructs a
simulated scan based on a state estimate and a precomputed map of the environment.
We leverage this reconstruction to remove false sensor inputs as well as detect and
remove spoofed LiDAR measurements.

• We propose a fault tolerant safe control design using control barrier certificates. We
present a sum-of-squares program to compute a control barrier certificate, which verifies

8

a given safety constraint in the presence of estimation errors due to noise and attacks.
We prove bounds on the probability that our synthesized control input guarantees
safety.

• We validate our proposed framework using a UAV delivery system equipped with
multiple sensors including a 2D-LiDAR. We show that the UAV successfully avoids the
obstacles when navigating in an urban environment using our synthesized control law,
while crashes into the unsafe region using a baseline.

• We propose a safe control system for 3D-LiDAR-perception-based AVs based on the
point cloud from neighboring vehicles. In the proposed system, a Fault Detection,
Identification, and Isolation (FDII) module detects and classifies the attacks, and
updates the unsafe region for the vehicle. A safe controller guarantees the safety of the
system based on the updated unsafe region.

• We analyze the correctness of the results from the FDII module. We show that the
FDII module can detect and classify attacks correctly, and output the unsafe region
containing the projection of the obstacles.

• Our results are validated through CARLA [63], in which we show that the proposed
FDII procedure correctly detects multiple attack types and reconstructs the true unsafe
region. We then show that, under our control algorithm, the vehicle reaches the given
target while avoiding an obstacle.

1.4 Structure of Thesis

The core of this thesis is formed by two interconnected threads that advance the theory and
practice of safe autonomy in complex, uncertain environments. The first thread focuses on
the verifiable safety of learning-enabled systems, including both deterministic and stochastic
dynamics. It develops formal conditions and scalable algorithms for the synthesis and exact
verification of neural control barrier functions (NCBFs), leveraging the structure of ReLU
networks and integrating verification into the learning process. The second thread addresses
resilient safe control under faults and adversarial conditions. It introduces fault-tolerant
control frameworks capable of detecting, isolating, and mitigating sensor faults for cyber-
physical systems while maintaining provable safety guarantees. These two threads share a

9

unifying goal: enabling trustworthy autonomy through learning-enabled control methods
that are not only expressive but also certifiably safe and robust. The thesis is structured as
follows:

Chapter 2 Safety Verification of Deterministic Systems: The content of this chapter
is based on the following works. Exact Verification of ReLU Neural Control Barrier Functions
is coauthored with Dr. Junlin Wu, Prof. Yevgeniy Vorobeychik and Prof. Andrew Clark. In
the paper, we explore novel theoretical advances addressing the inherent difficulties posed by
the non-differentiability of ReLU activation functions used in neural networks. Specifically, the
paper introduces generalized Nagumo’s conditions for invariance in the presence of non-smooth
barriers, followed by detailed algorithmic solutions leveraging piecewise-linear decomposition
using VNN-based approaches. SEEV: Synthesis with Efficient Exact Verification for ReLU
Neural Barrier Functions is coauthored with Dr. Zhizhen Qin, Prof. Sicun Gao and Prof.
Andrew Clark. In the paper, we further mitigated the scalability issue. We introduce a
regularizer in synthesis to help reduce computational complexity in verification, as well
as an efficient exact verification by proposing neural breadth-first search and hierarchical
verification. We concludes with comprehensive numerical results that illustrate significant
gains in verification efficiency and scalability compared to existing approaches.

Chapter 3 Safety Verification of Stochastic Systems: The content of this chapter
is based on the work presented in our submission to IEEE Transactions on Automatic
Control entitledStochastic Neural Control Barrier Functions, which is coauthored with Dr.
Manan Tayal, Mr. Jackson Cox, Prof. Pushpak Jagtap, Prof. Shishir Kolathaya and Prof.
Andrew Clark. Building upon deterministic verification methods, this chapter extends safety
guarantees to stochastic autonomous systems, introducing Smooth and ReLU-based Stochastic
Neural Control Barrier Functions (SNCBFs). It explores novel theoretical results and synthesis
techniques tailored for systems subjected to probabilistic uncertainties and noise. The chapter
systematically describes verification and synthesis frameworks, embedding formal safety
verification into the training loop of SNCBFs. Numerical experiments, including stochastic
vehicle dynamics and robotic navigation, demonstrate the effectiveness and efficiency of the
proposed methods, illustrating advances in handling real-world uncertainty in safety-critical
contexts.

10

https://proceedings.neurips.cc/paper_files/paper/2023/file/120ed726cf129dbeb8375b6f8a0686f8-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b7868dedad7192f83c9efb042da43317-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2024/file/b7868dedad7192f83c9efb042da43317-Paper-Conference.pdf

Chapter 4 Resilient Safe Control under Low-Dimensional Sensor Faults: This
chapter addresses safety and resilience in the presence of sensor faults and attacks. Section
4.3-4.4 is based on Safe Control for Nonlinear Systems under Faults and Attacks via Control
Barrier Functions, which is coauthored with Dr. Zhouchi Li and Prof. Andrew Clark. In
the paper, we investigate safety and resilience in the presence of sensor faults. Specifically,
the paper introduces comprehensive frameworks integrating fault-tolerant mechanisms and
attack detection with control barrier functions. Section 4.5 is based on Fault Tolerant Neural
Control Barrier Functions for Robotic Systems under Sensor Faults and Attacks, which is
coauthored with Dr. Luyao Niu, Prof. Andrew Clark and Prof. Radha Poovendran. This
paper generalizes the fault-tolerant CBFs to fault-tolerant NCBFs for better approximation
of complex environments.

Chapter 5 Resilient Safe Control under LiDAR Perception Attacks: This chapter
addresses safety and resilience in the presence of LiDAR Spoofing attacks. Section 5.2 is based
on Barrier Certificate based Safe Control for LiDAR-based Systems under Sensor Faults and
Attacks, which is coauthored with Mr. Shiyu Cheng, Dr Luyao Niu and Prof. Andrew Clark.
In the paper, we focus on 2D-LiDAR-based systems and investigate threats unique to these
sensors. A fault detection, isolation and recovery approach is proposed together with control
barrier certificate to achieve resilient safe control under LiDAR attacks. Section 5.3 is based
on Cooperative Perception for Safe Control of Autonomous Vehicles under LiDAR Spoofing
Attacks, which is coauthored with Dr. Zhouchi Li, Mr. Shiyu Cheng, and Prof. Andrew
Clark. The paper reveals the characteristics of 3D LiDAR-based perception. It proposes
methodologies for fault detection, isolation, and identification (FDII), combined with robust
fault-tolerant control (FTC) strategies that ensure the system remains within safe operating
regions despite compromised components.

11

https://ieeexplore-ieee-org.libproxy.wustl.edu/document/11006510
https://ieeexplore-ieee-org.libproxy.wustl.edu/document/11006510
https://ieeexplore-ieee-org.libproxy.wustl.edu/abstract/document/10610491
https://ieeexplore-ieee-org.libproxy.wustl.edu/abstract/document/10610491
https://ieeexplore-ieee-org.libproxy.wustl.edu/abstract/document/9992432
https://ieeexplore-ieee-org.libproxy.wustl.edu/abstract/document/9992432
https://arxiv.org/pdf/2302.07341
https://arxiv.org/pdf/2302.07341

Chapter 2

Neural Control Barrier Functions For
Deterministic Systems

Control Barrier Functions (CBFs) are a popular approach for safe control of nonlinear systems.
In CBF-based control, the desired safety properties of the system are mapped to nonnegativity
of a CBF, and the control input is chosen to ensure that the CBF remains nonnegative
for all time. Recently, machine learning methods that represent CBFs as neural networks
(neural control barrier functions, or NCBFs) have shown great promise due to the universal
representability of neural networks. However, verifying that a learned CBF guarantees safety
remains a challenging research problem. This chapter presents novel exact conditions and
algorithms for verifying safety of feedforward NCBFs with ReLU activation functions.

The key challenge in doing so is that, due to the piecewise linearity of the ReLU function,
the NCBF will be nondifferentiable at certain points, thus invalidating traditional safety
verification methods that assume a smooth barrier function. We resolve this issue by
leveraging a generalization of Nagumo’s theorem for proving invariance of sets with nonsmooth
boundaries to derive necessary and sufficient conditions for safety. Based on this condition, we
propose an algorithm for safety verification of NCBFs that first decomposes the NCBF into
piecewise linear segments, named hyperplanes for differential and hinges for nondifferentiable,
respectively.

We propose a VNN-based methods and then solves a nonlinear program to verify safety of
each segment as well as the intersections of the linear segments. We mitigate the complexity
by only considering the boundary of the safe region and by pruning the segments with Interval
Bound Propagation (IBP) and linear relaxation. We evaluate our approach through numerical
studies with comparison to state-of-the-art SMT-based methods.

12

VNN-based verifications exploit the piecewise-linear structure of ReLU neural networks,
however, such approaches still rely on enumerating all of the activation regions of the network
near the safety boundary, thus incurring high computation cost. To address this issue, we
propose a framework for Synthesis with Efficient Exact Verification (SEEV). Our framework
consists of two components, namely (i) an NCBF synthesis algorithm that introduces a
novel regularizer to reduce the number of activation regions at the safety boundary, and
(ii) a verification algorithm that exploits tight over-approximations of the safety conditions
to reduce the cost of verifying each piecewise-linear segment. Our simulations show that
SEEV significantly improves verification efficiency while maintaining the NCBF quality across
various benchmark systems and neural network structures.

Contributions: This chapter resolves the challenge of verifying safety of NCBFs with ReLU
activation functions with the following contributions.

• We derive exact safety conditions for ReLU NCBFs by leveraging a generalization of
Nagumo’s theorem for proving invariance of sets with nonsmooth boundaries.

• We propose an algorithm to verify that an NCBF satisfies our derived safety conditions.
Our approach leverages the piece-wise linearity of ReLU neural networks and decomposes
the NCBF into hyperplanes and hinges. In order to mitigate the complexity of this
stage, we show that it suffices to consider the boundary of the safe region.

• We propose a VNN-based searching algorithm to identify boundary hyperplanes and
hinges by over-approximate the input-output relationship of the NCBF with Interval
Bound Propagation and linear relaxation. After decomposing the NCBF, we verify
safety by solving a set of nonlinear programs

• We mitigate computational bottleneck by (i) developing a training procedure that
reduces the number of segments that must be verified and (ii) constructing verification
algorithms that efficiently enumerate the linear segments at the safety boundary and
exploit easily-checked sufficient conditions to reduce computation time.

• Towards (i), we introduce a regularizer to the loss function that penalizes the dissimilarity
of activation patterns along the CBF boundary.

• Towards (ii), we propose a breadth-first search algorithm for efficiently enumerating
the boundary segments, as well as tight linear over-approximations of the nonlinear
optimization problems for verifying each segment.

13

• Moreover, we integrate the synthesis and verification components by incorporating
safety counterexamples returned by the safety verifier into the training dataset.

• Our simulation results demonstrate significant improvements in verification efficiency
and reliability across a range of benchmark systems.

Organization: The remainder of this chapter is organized as follows. Section 2.1 present
existing work and how this chapter differentiate from these works. Section 2.2 gives the system
model and background on neural networks and notation. Section 2.3 presents the problem
formulation and exact conditions for safety. Section 2.4 presents VNN-based algorithm and
neural-breadth-first-search approach to identify the hyperplanes and hinges containing the
boundary of the NCBF safe region. Section 2.5 present exact and hierarchical approach
to effectively verify that an NCBF satisfies the safety conditions. Section 2.6 evaluate our
proposed verification method and compare with state-of-the-art verification methods. Section
2.7 presents the framework to synthesize a verifiable ReLU NCBF to ensure the safety of the
system. Section 2.8 concludes the chapter.

2.1 Related Work

Energy-based methods have been proposed to guarantee safety by ensuring that a particular
energy function remains nonnegative. Barrier certificates for safe control were first proposed
in [12]. More recently, CBFs have emerged as promising approaches to safe control, due
to their compatibility with a wide variety of control laws [8, 20, 18, 21, 22, 23, 24]. Sum-
of-squares (SOS) optimization and other techniques derived from algebraic geometry have
been widely used for safety verification of polynomial barrier functions [12, 8, 64, 65, 18].
However, SOS-based approaches for polynomial CBFs cannot be applied directly to NCBF
verification, since activation functions used in neural networks are not polynomial and may
be non-differentiable.

Neural barrier certificate [66, 40, 67, 68] and NCBFs [23, 16, 22] have been proposed to
describe complex safety constraints that cannot be encoded polynomials. Current work,
including SMT-based methods [69, 40, 70] and mixed integer programs [71], verify safety by
constructing a nominal control policy and proving that it satisfies the NCBF constraints.
However, as we show in Section 3.4, the reliance on a particular control policy may lead to false

14

negatives during safety verification. Another related body of work deals with the problem of
verifying neural networks including SMT [72], output reachable set verification [73], polynomial
approximations of the barrier function [74], verify input/output relationships [75, 76, 77]
and ReLU neural networks focused verification [78, 79]. These methods, however, are not
directly applicable to the problem of NCBF verification, which requires joint consideration
of the neural network and the underlying nonlinear system dynamics. Methods based on
input/output relationship can verify by encode dynamics and control policy with neural
networks. However, with approximating error introduced, these methods are not directly
applicable for exact verification. Piecewise linear approximations of ReLU neural networks
have been used to develop tractable safety verification algorithms using linear [80] and SOS
programming [81]. These approaches leads to sound and incomplete verification algorithms
and have only be applied for discrete-time systems, whereas the present chapter proposes
exact verification algorithms for continuous-time systems.

2.1.1 Verification of NCBFs

Current work, including SMT-based methods [69, 40, 70] and mixed integer programs [71],
verifies safety by constructing a nominal control policy and proving that it satisfies the
NCBF constraints. However, the reliance on a particular control policy may lead to false
negatives during safety verification. Another related body of work deals with the problem of
verifying neural networks including SMT [72], output reachable set verification [73], polynomial
approximations of the barrier function [74], verify input/output relationships [75, 76, 77]
and ReLU neural networks focused verification [78, 79]. These methods, however, are not
directly applicable to the problem of NCBF verification, which requires joint consideration
of the neural network and the underlying nonlinear system dynamics. Methods based on
input/output relationship can verify by encode dynamics and control policy with neural
networks. However, with approximating error introduced, these methods are not directly
applicable for exact verification. Piecewise linear approximations of ReLU neural networks
have been used to develop tractable safety verification algorithms using linear [80] and SOS
programming [81]. These approaches leads to sound and incomplete verification algorithms
and have only be applied for discrete-time systems, whereas the present chapter proposes
exact verification algorithms for continuous-time systems.

15

A key challenge in NCBF-based control is safety verification, which amounts to ensuring that
the constraints on the control can be satisfied throughout the state space under actuation limits.
The NCBF safety verification problem effectively combines two problems that are known to be
difficult, namely, input-output verification of neural networks (VNN) [82, 83, 84, 85, 86, 87]
and reachability verification of nonlinear systems. While sound and complete verifiers such as
dReal can be applied to NCBFs, they typically can only handle systems of dimension three or
small neural networks [40, 88]. In [39], exact conditions for safety verification of NCBFs with
ReLU activation functions were proposed that leverage the piecewise-linearity of ReLU-NNs
to reduce verification time compared to dReal for general activation functions. The exact
conditions, however, still require checking correctness of the NCBF by solving a nonlinear
optimization problem along each piecewise-linear segment. Hence, the NCBF verification
problem remains intractable for high-dimensional systems.

2.1.2 Synthesis of Verifiable Safe Control

Neural control barrier functions have been proposed to describe complex safety sets to
remain inside and certify safety of a controlled system [66, 40, 67, 68] or synthesize control
input based on NCBFs to ensure safety [16, 89, 23, 22]. However, the synthesized NCBF
may not ensure safety. Safety verification of NCBFs is required. Sum-of-squares (SOS)
optimization [12, 8, 90, 65, 18] has been widely used for polynomial barrier functions,
however, they are not applicable due to the non-polynomial and potentially non-differentiable
activation functions of NCBFs.

Verification-in-the-loop approaches have been proposed to synthesize neural networks with
verifiable guarantees from reachability analysis [42] and neural network verification [91].
Counterexample Guided Inductive Synthesis (CEGIS) has been applied using SMT-based
techniques [40, 69, 70, 92, 93]. However, SMT-based methods do not scale well with increasing
network size. Other verification-in-the-loop approaches utilize reachability analysis [42] and
branch-and-bound neural network verification tools [91]. However, existing works suffer from
the difficulty of performing verification and generating counterexamples in a computationally
efficient manner. Sampling-based approaches [93, 35] aim to prove safety using Lipschitz
conditions, but they rely on dense sampling over the state space, which is computationally
prohibitive.

16

2.2 Problem Formulation

2.2.1 System Model

We consider a continuous-time nonlinear control-affine system with state x(t) ∈ X ⊆ Rn,
control input u(t) ∈ U ⊆ Rm, and dynamics

ẋ(t) = f(x(t)) + g(x(t))u(t), (2.1)

where f : Rn → Rn and g : Rn → Rn×m are known functions. A control policy is a function
µ : Rn → U that maps a state x to a control input u.

2.2.2 Safety and Control Barrier Functions

Safety of dynamical systems requires x(t) to remain in a given region C, which we denote as
the safe region. We assume the safe region is given by C = {x : h(x) ≥ 0} ⊆ X , for some
function h : X → R. Safety is related to the property of positive invariance, which we define
as follows.

Definition 2.1. A set D ⊆ Rn is positive invariant under dynamics (2.1) and control policy
µ if x(0) ∈ D and u(t) = µ(x(t)) ∀t ≥ 0 imply that x(t) ∈ D for all t ≥ 0.

We define a control policy µ to be safe if there is a set D such that (i) D ⊆ C and (ii) D is
positive invariant under dynamics (2.1) and control policy µ.

One approach to designing safe control policies is to choose a function b : Rn → R, denoted
as a Control Barrier Function (CBF), and let D = {x : b(x) ≥ 0}. In the case where b is
continuously differentiable, the following result can be used to guarantee positive invariance
of D.

Theorem 2.1 ([8]). Suppose that b is a CBF, b(x(0)) ≥ 0, and u(t) satisfies

∂b

∂x
(f(x) + g(x)u) ≥ −α(b(x)). (2.2)

17

for all t, where α : R → R is a strictly increasing function with α(0) = 0. Then the set
D = {x : b(x) ≥ 0} is positive invariant.

Theorem 2.1 implies that, if b is a CBF, then adding (2.2) as a constraint on the control at
each time step suffices to guarantee safety.

2.2.3 Problem Formulation

We consider a feedforward neural network (NN) b : X → R with ReLU activation function.
Since b is not continuously differentiable due to the piecewise linearity of the ReLU function,
the guarantees of Theorem 2.1 cannot be applied directly. Our overall goal will be to derive
analogous conditions to (2.2) for ReLU-NCBFs, and then ensure that any control policy µ
that satisfies the conditions will be safe with D = {x : b(x) ≥ 0}.

Problem 2.1. Given a nonlinear continuous-time system (2.1), a neural network function
b : X → R, a set of admissible control inputs U = {u : Au ≤ c} for given matrix A ∈ Rp×m

and vector c ∈ Rp, and a safe set C = {x : h(x) ≥ 0}, determine whether (i) D ⊆ C and (ii)
there exists a control policy µ such that D is positive invariant under dynamics (2.1) and
control policy µ.

2.3 Exact Conditions for Safety

Nagumo’s Theorem gives necessary and sufficient conditions for positive invariance of a set.
We first define the concept of tangent cone, and then present positive invariance conditions
based on the tangent cone. The approach of the proof is to characterize the tangent cone to
the set D = {x : b(x) ≥ 0}.

Definition 2.2. Let A be a closed set. The tangent cone to A at x is defined by

TA(x) =
{
z : lim inf

τ→0

dist(x+ τz,A)
τ

= 0

}
(2.3)

The following result gives an approach for constructing the tangent cone.

18

Lemma 2.1 ([94]). Suppose that the set A is defined by

A = {x : qk(x) ≤ 0, k = 1, . . . , N}

for some collection of differentiable functions q1, . . . , qN . For any x, let J(x) = {k : qk(x) = 0}.
Then

TA(x) = {z : zT∇qk(x) ≤ 0 ∀k ∈ J(x)}.

The following is a fundamental preliminary result for establishing positive invariance.

Theorem 2.2 (Nagumo’s Theorem [94], Section 4.2). A closed set A is controlled positive
invariant if and only if, whenever x(t) ∈ ∂A, u(t) ∈ U satisfies

(f(x(t)) + g(x(t))u(t)) ∈ TA(x(t)) (2.4)

When a CBF b(x) is continuously differentiable, ensuring that (2.2) is satisfied is equivalent
to verifying that there is no x satisfying b(x) = 0, ∂b

∂x
g(x) = 0, and ∂b

∂x
f(x) < 0 [18].

The following is one of the variants of Farkas’ Lemma.

Lemma 2.2 (Farkas’ Lemma [95]). Let A be a real matrix with m rows and n columns, and
let b ∈ Rn

u be a vector. One of the following conditions holds.

• The system of inequalities Ax ≤ b has a solution

• There exists y such that y ≥ 0, yTA = 0T and yT b < 0, where 0 denote a zero vector.

2.3.1 Safety Violation due to Non-differentiability

When b is represented by a ReLU neural network, however, b will not be differentiable when
the input x leads to neurons having zero pre-activation input, i.e., when T(x) ̸= ∅. Although
the set of x with T(x) ̸= ∅ has measure zero, such points can nonetheless cause safety
violations as illustrated by the following example.

19

Example 2.1. Let x(t) ∈ R2 and suppose the dynamics of x are given by

ẋ1(t) = x1 + u

ẋ2(t) = −x1 + 5x2
⇒ f(x) =

(
1 0

−1 5

)
x, g(x) =

(
1

0

)

Suppose that U = Rm, the safe region C = {x : x21 + x22 ≤ 9}, and the candidate CBF is
given by b(x) = 1− ||x||1. This CBF can be realized by a neural network with a single layer
(L = 1) with four neurons (M1 = 4), weights W11 = (1 0)T , W12 = (−1 0)T , W13 = (0 1)T ,
W14 = (0 − 1)T , r1j = 0 for j = 1, . . . , 4, Ωj = −1 for j = 1, . . . , 4, and ψ = 1. We
observe that D = {x : b(x) ≥ 0} ⊆ C. Furthermore, whenever ∂b

∂x
exists, we have ∂b

∂x
∈

{(1 1), (1 − 1), (−1 1), (−1 − 1)}, each of which satisfies ∂b
∂x
g(x) ̸= 0. On the other hand,

the set D is not positive invariant. If x2(0) > 1
5
, then |x1(0)| ≤ 1 implies that ẋ2(0) > 0, and

indeed, x2(t) will continue to increase until x(t) /∈ D.

Let bc denote the NCBF defined in the example, which fails our defined safety conditions. For
comparison, we trained an NCBF bθ and verified it using our proposed approach. We then
constructed a nominal controller µnom as a Linear Quadratic Regulator (LQR) controller that
drives the system from initial point (0, 0.1) to the origin. We compared the trajectories arising
from the optimization-based controller defined by Eq. (10) using the bθ and bc. For the unsafe
NCBF bc, the optimization-based controller is unable to satisfy the safety constraints at the
boundary point (0, 1), resulting in a safety violation. On the other hand, while the NCBF
bθ contained multiple non-differentiable points, it is possible to choose u to ensure safety
at these points. For example, the point (−0.19, 2.91) is a non-differentiable point on the
boundary bθ = 0. There are four activation sets intersecting at this point, with corresponding
values of ∂bc

∂x
g(x) given by {−0.0455,−0.053,−0.025,−0.033}. Since any control input u with

negative sign and sufficiently large magnitude will satisfy ∂bc
∂x

(f(x) + g(x)u) ≥ 0 for all of
these values, this non-differentiable point does not compromise safety of the system, and the
trajectory of the system constrained by bθ remains in the safe region for all time.

Fundamentally, this safety violation occurs because at x = (0 1)T , we have b(x) = 0,
T(x) = {(1, 1), (1, 2)} (i.e., the preactivation input to the first and second neurons in the
hidden layer is zero), creating a discontinuity in the slope of b(x). For x′ in the neighborhood
of (0 1)T , the value of ∂b

∂x
(x′)g(x′) will be either 1 or −1. Since there is no single control input

that satisfies (2.2) for both values of ∂b
∂x
g(x′), it is impossible to ensure safety of the system

in the neighborhood of (0 1)T .

20

Figure 2.1: Comparison of optimization-based controller using trained NCBF bθ and unsafe
NCBF bc.

2.3.2 ReLU Neural Control Barrier Function

We give notations to describe a neural network (NN) with L layers and Mi neurons in the
i-th layer. We let the input to the NN be denoted x, the output at the j-th neuron of the
i-th layer be denoted zij, and the output of the network be denoted y. We let zi denote the
vector of neuron outputs at the i-th layer. The outputs are computed as

zij =

{
σ(W T

ijx+ rij), i = 1

σ(W T
ij zi−1 + rij), i ∈ {2, . . . , L− 1}

, y = ΩTzL + ψ (2.5)

where σ : R→ R is the activation function. The input to the function σ is the pre-activation
input to the neuron, and is given by W T

1jx + r1j for the j-th neuron at the first layer and
W T
ij zi−1 + rij for the j-th neuron at the i-th hidden layer. Wij has dimensionality n× 1 for

i = 1 and Mi−1×1 for i > 1. Wi is an n×Mi matrix. In this chapter, we assume that σ is the
ReLU function ReLU(z) = max{0, z}. The output of the network is given by y = ΩTzL + ψ,
where Ω ∈ RML and ψ ∈ R. The j-th neuron at the i-th layer is activated by a particular
input x if its pre-activation input is nonnegative, inactivated if the pre-activation input is
nonpositive, and unstable if the pre-activation input is zero. A set of neurons S = (S1, . . . , SL),
with Si ⊆ {1, . . . ,Mi} denoting a subset of neurons at the i-th layer, is activated by x if all
of the neurons in S are activated by x and all the neurons not in S are inactivated by x. A
set of neurons T = (T1, . . . , TL) with Ti ⊆ {1, . . . ,Mi} is unstable by x if all of the neurons
in T are unstable by x.

21

For a given set S, if S is activated by x, then the pre-activation input to each neuron and the
overall output of the network are affine in x, with the affine mapping determined by S as
follows. For the first layer, we define

W 1j(S) =

{
W1j, j ∈ S1

0, else
r1j(S) =

{
r1j, j ∈ S1

0, else
(2.6)

so that the output of the j-th neuron at the first layer is W 1j(S)
Tx+ r1j(S). We recursively

define W ij(S) and rij(S) by letting Wi(S) be a matrix with columns W i1(S), . . . ,W iMi
(S)

and

W ij(S) =

{
Wi−1(S)Wij, j ∈ Si
0, else

rij(S) =

{
W T
ij ri−1(S) + rij, j ∈ Si,

0, else
(2.7)

where ri(S) is the vector with elements rij(S), j = 1, . . . ,Mi.

We define W (S) = WL(S)Ω and r(S) = ΩT rL(S) + ψ. Based on these notations, when an
input x activates the set S, zij = W ij(S)

Tx+ rij(S) and y = W (S)Tx+ r(S).

Lemma 2.3. Let X (S) denote the set of inputs x that activate a particular set of neurons S,
and let W0(S) be equal to the identity matrix, and r0 to be zero vector. Then

X (S) =
L⋂
i=1

(⋂
j∈Si

{x : W T
ij (Wi−1(S)

Tx+ ri−1) + rij ≥ 0}

∩
⋂
j /∈Si

{x : W T
ij (Wi−1(S)

Tx+ ri−1) + rij ≤ 0}

 . (2.8)

Proof. We prove by induction on L. If L = 1, then x ∈ X (S) if the pre-activation input to
the (1, j) neuron is nonnegative for all j ∈ S1 and nonpositive for all j /∈ S1. We have that
the pre-activation input is equal to W T

1jx+ r1j, establishing the result for L = 1.

22

Now, inducting on L, we have that x ∈ X (S1, . . . , SL−1) if and only if

x ∈
L−1⋂
i=1

(⋂
j∈Si

{x : W T
ij (Wi−1(S)

Tx+ ri−1) + rij ≥ 0}

∩
⋂
j /∈Si

{x : W T
ij (Wi−1(S)

Tx+ ri−1) + rij ≤ 0}



by induction. If x ∈ X (S1, . . . , SL−1), then x ∈ X (SL) if and only if the pre-activation input
to the j-th neuron at layer L is nonnegative for all j ∈ SL and nonpositive for j /∈ SL. The
pre-activation input is equal to W T

LjzL−1 + rLj, which we can expand by induction as

W T
LjzL−1 + rLj =

ML−1∑
j′=1

(WLj)j′zL−1,j′ + rLj

=

ML−1∑
j′=1

(WLj)j′(WL−1,j′(S)
Tx+ rL−1,j′(S) + rLj

=

(
ML−1∑
j′=1

(WLj)j′WL−1,j′(S)

)T

x+ rLj(S)

= (WL−1(S)WLj)
Tx+ rLj(S)

completing the proof.

Note that in (2.8), a particular input x could belong to multiple activation regions X (S). This
is because if the j-th neuron at the i-th layer is unstable, then both (S1, . . . , Si ∪ {j}, . . . , SL)
and (S1, . . . , Si\{j}, . . . , SL) can be regarded as activated by x. We let S(x) ≜ {S : x ∈ X (S)}
and let T(x) denote the set of unstable neurons produced by input x. Given a collection of
activation sets S1, . . . ,Sr, we let

T(S1, . . . ,Sr) =

(
r⋃
l=1

Sl

)
\

(
r⋂
l=1

Sl

)
.

The set T(S1, . . . ,Sr) is equal to the set of neurons that must be unstable in order for an
input x to belong to X (S1) ∩ . . . ∩ X (Sr).

23

Finally, we define the terms hyperplane and hinge. For any S ⊆ {1, . . . , L} × {1, . . . ,Mi}, we
define X (S) := {x : S(x) = S}. The collection of X (S) for all S is the set of hyperplanes
associated with the ReLU neural network. A hyperplane that intersects the set {x : bθ(x) = 0}
is a boundary hyperplane. The intersection of hyperplanes X (S1), . . . ,X (Sr) is called a hinge.
A hinge that intersects the set {x : bθ(x) = 0} is a boundary hinge.

2.3.3 Generalized Nagumo’s Theory for ReLU NCBF

To address this issue, we can utilize the piece-wise linearity of ReLU neural networks by
regarding the ReLU NCBF as a set of linear CBFs and intersections among linear CBFs.

Proposition 2.1. For any x ∈ ∂D, we have

TD(x) =
⋃

S∈S(x)

 ⋂
(i,j)∈T(x)∩S

{z : (Wi−1(S)Wij)
T z ≥ 0}

∩
 ⋂

(i,j)∈T(x)\S

{z : (Wi−1(S)Wij)
T z ≤ 0}

 ∩ {z : W (S)T z ≥ 0}

 (2.9)

Proof. Define X 0(S) = X (S) ∩ D. We will first show that, for all x with b(x) = 0,

TD(x) =
⋃

S∈S(x)

TX 0(S)
(x). (2.10)

We observe that

dist

x,D \ ⋃
S∈S(x)

X 0(S)

 > 0,

and hence
dist(x+ τz,D) = min

S∈S(x)
dist(x+ τz,X 0(S))

for τ sufficiently small.

24

Suppose that z ∈ TX 0(S)
(x). Then for any τ ≥ 0, dist(x+ τz,D) ≤ dist(x+ τz,X 0(S)) since

X 0(S) ⊆ D, and hence

lim inf
τ→0

dist(x+ τz,D)
τ

≤ lim inf
τ→0

dist(x+ τz,X 0(S))

τ
= 0.

We therefore have z ∈ TD(x).

Now, suppose that z ∈ TD(x) and yet z /∈
⋃

S∈S(x) TX 0(S)
(x). Then for all S ∈ S(x), there

exists ϵS > 0 such that

lim inf
τ→0

dist(x+ τz,X 0(S))

τ
= ϵS.

Let ϵ = min {ϵS : S ∈ S(x)}. For any δ ∈ (0, ϵ), there exists τ > 0 such that τ < τ implies

dist(x+ τz,D)
τ

= min
S∈S(x)

dist(x+ τz,X 0(S))

τ
> δ

implying that lim infτ→0
dist(x+τz,D)

τ
> 0 and hence z /∈ TD(x). This contradiction implies

(2.10).

It now suffices to show that, for each S ∈ S(x),

TX 0(S)
(x) =

 ⋂
(i,j)∈T(x)∩S

{z : (Wi−1(S)Wij)
T z ≥ 0}

∩
 ⋂

(i,j)∈T(x)\S

{z : (Wi−1(S)Wij)
T z ≤ 0}

 ∩ {z : W (S)T z ≥ 0}.

We have that each X 0(S) is given by

X 0(S) = {x′ : (Wi−1(S)Wij)
Tx′ + rij(S) ≥ 0 ∀(i, j) ∈ S}

∩ {x′ : (Wi−1(S)Wij)
Tx′ + rij(S) ≤ 0 ∀(i, j) /∈ S} ∩ {x′ : W (S)Tx′ + r(S) ≥ 0},

thus matching the conditions of Lemma 2.1 when each gk function is affine. Furthermore,
the set J(x) is equal to the set of functions that are exactly zero at x, which consists of
{(Wi−1(S)Wij)

Tx+ rij(S) : (i, j) ∈ T (x)} together with W (S)Tx+ r(S). This observation
combined with Lemma 2.1 gives the desired result.

25

Lemma 2.4 is a consequence of Proposition 2.1. The following lemma addresses this issue by
giving exact and general conditions for a NCBF with ReLU activation function to satisfy
positive invariance. We let ∂D denote the boundary of the set D.

Lemma 2.4. The set D is positive invariant if and only if, for all x ∈ ∂D, there exist
S ∈ S(x) and u ∈ U satisfying

(Wi−1(S)Wij)
T (f(x) + g(x)u) ≥ 0 ∀(i, j) ∈ T(x) ∩ S (2.11)

(Wi−1(S)Wij)
T (f(x) + g(x)u) ≤ 0 ∀(i, j) ∈ T(x) \ S (2.12)

(Wi−1(S)Wij)
T (f(x) + g(x)u) ≥ 0 (2.13)

Proof. By Theorem 2.2, the set D is positive invariant if and only if for every x ∈ ∂D, there
exists u such that (f(x) + g(x)u) ∈ TD(x). By Proposition 2.1, this condition holds iff there
exists S ∈ S(x) such that

(f(x) + g(x)u) ∈

 ⋂
(i,j)∈T(x)∩S

{z : (Wi−1(S)Wij)
T z ≥ 0}

∩
 ⋂

(i,j)∈T(x)\S

{z : (Wi−1(S)Wij)
T z ≤ 0}

 ∩ {z : W (S)T z ≥ 0}


The above condition is equivalent to the conditions of the lemma, completing the proof.

Then the verification problem can be reformulated into verifying each activation set and
intersections. We now present the sufficient and necessary condition of a feasible NCBF in
the following Lemma.

Intuitively, conditions (2.11)–(2.13) can be interpreted as follows. Condition (2.13) is similar
to (2.2) when the gradient is given by W (S), i.e., when x is in the interior of the activation
region defined by S. Eq. (2.11)–(2.12) can be interpreted as choosing the control input to
ensure that x remains in the activation region of S (i.e., X (S)).

Lemma 2.4 can be used to construct NCBF-based safe control policies, analogous to control
policies based on continuously differentiable CBFs. Formally, given a nominal control policy

26

µnom, at each time t, we can choose u(t) by solving the optimization problem

minS∈S(x),u ||u− µnom(x(t))||22
s.t. W (S)T (f(x) + g(x)µ(x)) ≥ −α(b(x))

u ∈ U , (2.11), (2.12)
(2.14)

where α satisfies the same conditions as in Theorem 2.1. This problem can be solved by
decomposing (2.14) into |S(x)| quadratic programs (one for each S) and then selecting the
value of u that minimizes the objective function across all of the QPs. In particular, if S(x)
is a singleton, then the constraints on (2.14) reduce to Eq. (2.2).

We then give an equivalent condition for b(x) to be an NCBF. As a preliminary, we say that
a collection of activation sets S1, . . . ,Sr is complete if for any S′ /∈ {S1, . . . ,Sr}, we have
X (S1) ∩ · · · ∩ X (Sr) ∩ X (S′) = ∅.

Proposition 2.2. The function b is a valid CBF iff the following two properties hold:

(i) For all activation sets S1, . . . ,Sr with {S1, . . . ,Sr} complete and any x satisfying
b(x) = 0 and

x ∈

(
r⋂
l=1

X (Sl)

)
, (2.15)

there exist l ∈ {1, . . . , r} and u ∈ U such that

(Wi−1(Sl)Wij)
T (f(x) + g(x)u) ≥ 0 ∀(i, j) ∈ T(S1, . . . ,Sr) ∩ Sl (2.16)

(Wi−1(Sl)Wij)
T (f(x) + g(x)u) ≤ 0 ∀(i, j) ∈ T(S1, . . . ,Sr) \ Sl (2.17)

W (Sl)
T (f(x) + g(x)u) ≥ 0 (2.18)

(ii) For all activation sets S, we have

(X (S) ∩ D) \ C = ∅ (2.19)

The proof can be found in the supplementary material. We refer to any x that fails to meet
at least one of conditions (i) and (ii) of Proposition 2.2 as a safety counterexample.

27

2.4 Decomposition of ReLU NCBF

The ReLU NCBF can be decomposed into hyperplanes and hinges. Safety counterexamples
may be present in hyperplanes or hinges containing the zero-level set of the NCBF. In this
section, we present two search algorithms i) VNN-based approach utilize LiRPA conducting
coarser-to-finer search by discretizing the state space and ii) Neural Breadth-First-Search
searching for activated sets using linear programs in a Breadth-First-Search manner.

2.4.1 VNN-based Search Algorithm

Figure 2.2: Illustration of proposed coarser-to-finer searching method. Hyper-cubes that
intersect the safety boundaries are marked in red. When all possible activation sets are listed,
we can identify exact activation set and intersections.

The preceding proposition motivates our overall approach to verifying NCBFs, consisting of
the following steps. (Step 1) We conduct coarser-to-finer search by discretizing the state
space into hyper-cubes and use linear relaxation based perturbation analysis (LiRPA) to
identify grid squares that intersect the boundary {x : b(x) = 0}. (Step 2) We enumerate
all possible activation sets within each hyper-cube using Interval Bound Propagation (IBP).
We then identify the activation sets and intersections that satisfy b(x) = 0 using linear
programming. (Step 3) For each activation set and intersection of activation sets, we verify
the conditions of Proposition 2.2. In what follows, we describe each step in detail.

We next present the approach to enumerate activation sets of a given ReLU NCBF that
intersect the safety boundary, b(x) = 0. Our approach first conducts a coarse-grained search
that over-approximates the collection of activation sets that intersect with the safety boundary.
We then prune this collection to remove activation sets that cannot be realized. Specifically,
we first identify regions that contain b(x) = 0, then enumerate all possible activation sets
within the region and finally identify the sets that intersect the safety boundaries.

28

We first discretize the given state space X into hyper-cubes. We compute lower and upper
bounds of b(x) on each hyper-cube, denoted bl and bu respectively, with linear relaxation based
perturbation analysis (LiRPA), i.e., auto LiRPA [83]. For each hyper-cube B, we determine
B contains b(x) = 0 (red squares in Fig 2.2) if criteria sgn(bl) · sgn(bu) ≤ 0 holds, where
sgn(∗) is the sign function. For each B contains b(x) = 0, we utilize IBP to over-approximate
unstable neurons.

Interval bound propagation aims to compute an interval of possible output values by propa-
gating a range of inputs layer-by-layer, and is integrated into our approach as follows. We first
use partition the state space into cells and, for each cell, use LiRPA to derive upper and lower
bounds on the value of b(x) when x takes values in that cell. When the interval of possible
b(x) values in a cell contains zero, we conclude that that cell may intersect the boundary b(x)
= 0. For each neuron, we use IBP to compute the pre-activation input interval for values of
x within the cell. When the pre-activation input has a positive upper bound and negative
lower bound, we identify the neuron as unstable, i.e., it may be either positive or negative
for values of x within the cell. Using this approach, we enumerate a collection of activation
sets S. We then identify the activation sets S ∈ S̃ such that b(x) = 0 for some x ∈ X (S) by
searching for an x that satisfies the linear constraints in (16). This approach uses LiRPA and
IBP to identify the activation regions that intersect the boundary {x : b(x) = 0} without
enumerating and checking all possible activation sets, which would have exponential runtime
in the number of neurons in the network.

Let S̃ denote the over-approximated collection of activation sets computed by IBP. Note that
S ∈ S̃ may not intersect with b(x) = 0. As shown in Fig. 2.2, we let S denote the collection
of activation sets S ∈ S̃ that satisfy

W (S)Tx+ r(S) = 0

(Wi−1(S)Wij)
Tx+ rij(S) ≥ 0 ∀(i, j) ∈ S

(Wi−1(S)Wij)
Tx+ rij(S) ≤ 0 ∀(i, j) /∈ S

(2.20)

for some x ∈ B. The activation set boundaries indicate unstable neurons, which need to be
verified separately. Hence, we search for intersections as follows, where 2S denotes the set of
subsets of S.

V =

{
Z ∈ 2S :

(⋂
S∈Z

X (S)

)
∩ {x : b(x) = 0} ≠ ∅

}

29

2.4.2 Neural Breadth-First-Search

The boundary enumeration identifies the boundary hyperplanes S0 ∈ B. It initially identifies
the initial boundary activation set S0 ∈ B, enumerates all S ∈ B by NBFS starting from
S0, and finally enumerates all hinges consisting of the intersections of hyperplanes. The
NBFS approach avoids over-approximation of the set of boundary hyperplanes that may be
introduced by, e.g., interval propagation methods, and hence is particularly suited to deep
neural networks.

In what follows, we assume that the unsafe region X \ C and initial safe set I are connected,
and use ∂D to refer to the connected component of the boundary of D that separates I and
X \ C. This assumption is without loss of generality since we can always repeat the following
procedure for each connected component of I and X \ C.

Initial Activation Set Identification:

First, we identify the initial boundary activation set S0. Given x̂U ∈ X \C and x̂I ∈ I, define
a line segment

L̃ =
{
x ∈ Rn | x = (1− λ)x̂X\C + λx̂I , λ ∈ [0, 1]

}
(2.21)

The following lemma shows the initial boundary activation set S0 can always be produced as
S0 = S(x̃) for some x̃ ∈ L̃.

Lemma 2.5. Given two sample points x̂U , such that b(x̂U) < 0, and x̂I, such that b(x̂U) > 0,
let L̃ denote the line segment connecting these two points. Then, there exists a point x̃ ∈ L̃
with bθ(x̃) = 0.

Lemma 1 follows from the intermediate value theorem and continuity of bθ(x). In order to
search for S0, we choose a sequence of NL̃ points x01, . . . , x0NL̃

∈ L̃. For each x0i , we check to see
if X (S(x0i))∩∂D ≠ ∅ by solving boundary linear program BoundaryLP(S(x0i)) (2.22) as follows.
Given a state x0i , we define the activation set is S = τS(x

0
i). To determine if the activation set

S ∈ B, we solve a linear program referred to as the boundary linear program. The program
checks the existence of a state x ∈ X (S(x0i)) that satisfies W (S(x0i))

Tx+ r(S(x0i)) = 0. The

30

boundary linear program (BoundaryLP(S(x0i))) is defined as follows.

BoundaryLP(S(x0i)) =


find x

s.t. W (S(x0i))
Tx+ r(S(x0i)) = 0

x ∈ X (S(x0i))

(2.22)

SEEV identifies the initial activation set by conducting a BoundaryLP-based binary search
as shown in Algorithm. 1. The algorithm presents a procedure to identify a hyperplane
characterized by an initial activation set S0 that may contain the boundary ∂D. It iterates
over pairs of sample states from the unsafe training set TX\C and the safe training set TI . For
each pair (x̂X\C, x̂I), the algorithm initializes the left and right points of a search interval.
It then performs a binary search by repeatedly computing the midpoint xmid and checking
the feasibility of the boundary linear program BoundaryLP(xmid). The algorithm terminates
when BoundaryLP(xmid) is feasible, returning the activation set S(xmid) as S0.

Algorithm 1 Binary Search for S0

1: Input: TX\C, TI
2: Output: initial activation set S0

3: procedure EnumInit(TX\C, TI)
4: for x̂X\C ∈ TX\C and x̂I ∈ TI do ▷ Loop over all pairs of samples
5: xleft, xright ← x̂X\C, x̂I
6: xmid = 0.5(xleft + xright)
7: while xleft < xright do
8: if BoundaryLP(xmid) then ▷ Check if the BoundaryLP is feasible
9: Return S(xmid) ▷ Return S(xmid) as S0

10: end if
11: if W (S(x′))xmid + r(S(x′)) ≥ 0 then ▷ Check if b(xmid) > 0
12: xright ← xmid ▷ Update the right point
13: else
14: xleft ← xmid ▷ Update the left point
15: end if
16: end while
17: end for
18: end procedure

31

Neural Breadth-First Search for Decomposition

We next describe Neural Breadth-First Search (NBFS) for enumerating all activation sets
along the zero-level set, given an initial set S0. NBFS enumerates a collection of boundary
hyperplanes denoted as S by repeating the following two steps.

Step 1: Given a set S, NBFS identifies a collection of neighbor activation sets denoted
as B̃ as follows. For each (i, j) with i = 1, . . . , L and j = 1, . . . ,Mi, construct S′ as

S′ =

S \ (i, j), (i, j) ∈ S′

S ∪ (i, j), (i, j) /∈ S′
. We check whether S′ ∈ B by solving the linear program

USLP(S, (i, j)) (2.23).

NBFS conducts its search in a breadth-first manner. To determine if a neighboring activation
set, resulting from a flip in its (i, j) neuron, may contain the boundary, NBFS solves a
linear program, referred to as the unstable neuron linear program of USLP(S, (i, j)). This
linear program checks the existence of a state x ∈ X (S) ∩ {x : Wijx+ rij = 0} that satisfies
W (S)x+ r(S) = 0. The unstable neuron linear program is defined as follows.

USLP(S, (i, j)) =



find x

s.t. W (S)Tx+ r(S) = 0

Wij(S)
Tx+ rij(S) = 0

x ∈ X (S)

(2.23)

If there exists such a state x, then S′ is added to B̃. To further improve efficiency, we
employ the simplex algorithm to calculate the hypercube that overapproximates the boundary
hyperplane, denoted as H(S) ⊇ X (S), and relax the last constraint of (2.22) to x ∈ H(S).

Step 2: For each S′ ∈ B̃, NBFS determines if the activation region X (S′) is on the boundary
(i.e., satisfies X (S′) ∩ ∂D ≠ ∅) by checking the feasibility of BoundaryLP (S′). If there exists
such a state x, then S′ is added to S.

This process continues in a breadth-first search manner until all such activation sets on the
boundary have been enumerated. When this phase terminates, S = B. SEEV utilizes NBFS
for enumerating all activation sets along the zero-level set in a breadth-first search manner,

32

starting from an initial set S0. The algorithm initializes a queue Q and a set S with S0.
While Q is not empty, it dequeues an activation set S and checks if the set S ∈ B by solving
the boundary linear program BoundaryLP(S). If so, S is identified and added to S. The
algorithm then explores its neighboring activation sets by flipping each neuron activation
(i, j) in S. For each flip, it solves the unstable neuron linear program USLP(S, (i, j)). If
USLP is feasible, the new activation set S′ obtained by flipping (i, j) is added to Q for further
search on its neighbors. This process continues until all relevant activation sets are explored,
resulting in a set S that contains activation sets potentially on the boundary.

Algorithm 2 Enumerate Activated Sets
1: Input: S0

2: Output: Set of activation sets S
3: procedure NBFS(S0)
4: Initialize queue Q with initial activation set S0

5: Initialize sets S with S0

6: while queue Q is not empty do
7: Dequeue S from Q ▷ Dequeue the first activation set from the queue
8: if BoundaryLP(S) is feasible then ▷ Check if S is on a boundary activation set
9: if S /∈ S then ▷ If S is not already in S

10: Add S to S
11: end if
12: for (i, j) ∈ {1, . . . , L} × {1, . . . ,Mi} do ▷ For activation (i, j) of each neurons
13: if USLP(S, (i, j)) then ▷ Check if the neighbor may contain zero-level set
14: Create S′ by flipping activation (i, j)
15: Add S′ to Q ▷ Add adjacent activation set S′ to the queue
16: end if
17: end for
18: end if
19: end while
20: Return S
21: end procedure

Hinge Enumeration:

The verifier of EEV enumerates a collection V of boundary hinges, where each boundary
hinge V ∈ V is a subset S1, . . . ,Sr of B with X (S1) ∩ X (Sr) ∩ ∂D ≠ ∅.

33

Given Si ⊆ B and S, hinge enumeration filter the set of neighbor activation sets of S defined
as NS(Si) := {S′ : S′∆S = 1,S′ ∈ Si}. Then, hinge enumeration identifies hinges V by
solving linear program HingeLP(N (d)

S (Si)) (2.24) as follows.

HingeLP(N (d)
S (Si)) =


find x

s.t. W (S)Tx+ r(S) = 0, ∀S ∈ NS(Si)

x ∈ X (S), ∀S ∈ NS(Si)

(2.24)

If ∃x, hinge enumeration includes the hinge into the set V ∪V. The efficiency can be further
improved by leveraging the sufficient condition verification proposed in Section 2.5.3. The
following result describes the completeness guarantees of S and V enumerated in Line 5 and
8 of Algorithm 4.

Proposition 2.3. Let S and V denote the output of Algorithm 4. Then the boundary ∂D
satisfies ∂D ⊆

⋃
S∈S X (S). Furthermore, if S is complete and

(⋂r
i=1X (Si)

)
∩ {x : b(x) =

0} ≠ ∅, then {S1, . . . ,Sr} ∈ V.

Proof. Suppose that x′ ∈ ∂D \
(⋃

S∈S X (S)
)
, and let x denote the state on ∂D found

by Line 5 of Algorithm 4. Since ∂D is connected, there exists a path γ with γ(0) = x

and γ(1) = x′ contained in ∂D. Let S0,S1, . . . ,SK denote a sequence of activation sets
with S0 ∈ S(x), SK ∈ S(x′), and S0 equal to the set computed at Line 5 of Algorithm
4. Then there exists i ≥ 2 such that Si−1 ∈ S and Si /∈ S, and there exists t′ such that
γ(t′) ∈ X (Si−1) ∩ X (Si) ∩ {x : b(x) = 0}. We then have that T(Si−1,Si) is a subset of the
set T, and hence Si will be identified and added to S at Line 5 of Algorithm 4.

Now, suppose that S1, . . . ,Sr ∈ S is complete and
(⋂r

i=1X 0(Si)
)
∩ {x : b(x) = 0} ≠ ∅. Let

T = T(S1, . . . ,Sr). Then T is a subset of the sets S1, . . . ,Sr ∈ S. Since the intersection of
the X (S) sets with {x : b(x) = 0} is nonempty, {S1, . . . ,Sr} is added to V .

SEEV enumerates all hinges V ∈ V with Algorithm 3. Algorithm 3 outlines a method to
enumerate all feasible hinge hyperplanes formed by combinations of activation sets up to size
n. The algorithm takes as input a set of activation sets S and a maximum combination size
n. It initializes an empty list to store feasible hinges. For each combination size k from 2 to
n, the algorithm iterates over all activation sets in S. For each activation set S, it generates

34

Algorithm 3 Enumerate Hinges
1: Input: S, n
2: Output: V
3: procedure HingeEnum(S, n)
4: Initialize hinge_list as an empty list
5: for k from 2 to n do ▷ Outer loop to iterate over combination sizes
6: for S ∈ S do ▷ Iterate over all activation set
7: if k = 2 then
8: Vc ← NS(S)
9: else

10: Vc ← V(k−1)

11: end if
12: for each combination Sc ∈ Vc and S /∈ Sc do ▷ Iterate over combinations
13: if S and Sc are not adjacent then
14: Continue ▷ skip non-adjacent combinations
15: end if
16: if HingeLP(Sc ∪ {S}) then
17: Add V← Sc ∪ {S} to V(k) ▷ Add to set of corresponding k
18: end if
19: end for
20: end for
21: Add V(k) to V
22: end for
23: return hinge_list
24: end procedure

candidate combinations Vc based on adjacency—either the set of adjacent activation sets
when k = 2, or the feasible combinations from the previous iteration when k > 2. It then
checks each candidate combination Sc by verifying adjacency and solving the hinge linear
program HingeLP(Sc ∪ {S}). If the HingeLP is feasible, the combination is added to the list
of feasible hinges V. This process continues until all combinations up to size n have been
examined, resulting in a comprehensive list of feasible hinge hyperplanes that are essential
for understanding the intersections of activation regions.

35

2.5 Verification

In this section, we demonstrate the efficient exact verification of the given NCBF bθ(x) to
ensure the positive invariance of the set D under the NCBF-based control policy.

2.5.1 Verification of Hyperplanes

With the activation sets enumerated, the following result gives an equivalent condition for
verifying that there is no safety counterexample in the interior of X (S) for a given activation
set S.

Lemma 2.6. There is no safety counterexample in the set X (S) \
⋃

S′ ̸=SX (S) if and only if:

1. There do not exist x ∈ X and y ∈ Rp+1 satisfying (a) x ∈ int(X (S)), (b) b(x) = 0, (c)

y ≥ 0, (d) yT
(
−W (S)Tg(x)

A

)
= 0, and (e) yT

(
W (S)Tf(x)

c

)
< 0.

2. There does not exist x ∈ X with b(x) = 0, x ∈ int(X (S)), and h(x) < 0.

Proof. Suppose that condition 1 holds. Then for any x ∈ ∂D with S(x) = {S1, . . . ,Sr}, there
exists l ∈ {1, . . . , r} such that x ∈ X (Sl) and u ∈ U satisfy (2.11) and (2.12). For this choice
of u, we have (f(x) + g(x)u) ∈ TD(x) by Proposition 2.1. Hence D is positive invariant under
any control policy consistent with b by Theorem 2.2.

If Condition 2 holds, then there is no x with b(x) = 0 and x ∈ int(X (S)) such that x /∈ C.
Hence, there are no counterexamples to condition (ii) of Proposition 2.2.

Conditions 1 and 2 of Lemma 2.6 can be verified by solving nonlinear programs (see supple-
mentary material for the formulations of these nonlinear programs). Such nonlinear programs
are solved for each activation set S in the collection S computed during the enumeration
phase.

The following corollary describes the special case where there are no constraints on the
control, i.e., U = Rm.

36

Corollary 2.1. If U = Rm, then there is no safety counterexample in the set X (S) \⋃
S′ ̸=SX (S′) if and only if (1) there does not exist x ∈ X satisfying x ∈ int(X (S)), b(x) = 0,

W (S)Tg(x) = 0, and W (S)Tf(x) < 0 and (2) there does not exist x ∈ X with b(x) = 0,
x ∈ int(X (S)), and h(x) < 0.

Under the conditions of Corollary 2.1, the complexity of the verification problem can be
reduced. If g(x) is a constant matrix G, then safety is automatically guaranteed if W (S)TG ̸=
0. If f(x) is linear in x as well, then verification can be performed via a linear program.

2.5.2 Verification of Hinges

With the activation set boundaries enumerated, we now describe an approach for verifying
safety of intersections between activation sets.

Lemma 2.7. Suppose that the sets S1, . . . ,Sr satisfy condition (ii) of Lemma 2.6. There is
no safety counterexample in the set

X (S1) ∩ · · · ∩ X (Sr) \
⋃

S′ /∈{S1,...,Sr}

X (S′)

if and only if there do not exist x ∈ X and y1, . . . , yr ∈ RT+p+1, where T = |T(S1, . . . ,Sr)|,
satisfying (a) x ∈ int(X (S1))∩ · · · ∩ int(X (Sr)), (b) b(x) = 0, (c) yl ≥ 0 ∀l, (d) ∀l = 1, . . . , r

, yTl Θl(S1, . . . ,Sr(x)) = 0, where Θl(S1, . . . ,Sr, x) is a (T + p+ 1)×m matrix

Θl(S1, . . . ,Sr, x) ≜


−(Wi−1(Sl)Wij)

Tg(x) : (i, j) ∈ T(S1, . . . ,Sr) ∩ Sl

(Wi−1(Sl)Wij)
Tg(x) : (i, j) ∈ T(S1, . . . ,Sr) \ Sl
−W (Sl)

Tg(x)

A

 (2.25)

and (e) ∀l = 1, . . . , r, yTl Λl(S1, . . . ,Sr, x) < 0, where Λl(S1, . . . ,Sr, x) ∈ RT+p+1 is given by

Λl(S1, . . . ,Sr, x) ≜


(Wi−1(Sl)Wij)

Tf(x) : (i, j) ∈ T(S1, . . . ,Sr) ∩ Sl

−(Wi−1(Sl)Wij)
Tf(x) : (i, j) ∈ T(S1, . . . ,Sr) \ Sl
W (Sl)

Tf(x)

c

 (2.26)

37

Proof. The approach is to prove that condition (ii) of Proposition 2.2 holds; condition (i) holds
automatically if each S1, . . . ,Sr satisfies condition (ii) of Lemma 2.6. We have that conditions
(a) and (b) are equivalent to b(x) = 0 and (2.15). In order for x to be a safety counterexample,
for all l = 1, . . . , r, at least one of Eqs. (2.11) and (2.12) must fail. Equivalently, for all
l = 1, . . . , r, there does not exist u satisfying

−(Wi−1(Sl)Wij)
Tg(x)u ≤ (Wi−1(Sl)Wij)

Tf(x) ∀(i, j) ∈ T (S1, . . . ,Sr) ∩ Sl

−(Wi−1(Sl)Wij)
Tg(x)u ≥ (Wi−1(Sl)Wij)

Tf(x) ∀(i, j) ∈ T (S1, . . . ,Sr) \ Sl
−W ij(Sl)

Tg(x)u ≤ W (Sl)
Tf(x)

Au ≤ c

By Farkas Lemma, non-existence of such a u is equivalent to existence of yl satisfying yl ≥ 0

as well as (2.25) and (2.26).

The verification problem of Lemma 2.7 can be mapped to solving a nonlinear program

minx,y1,...,yr maxl=1,...,r

{
yTl Λl(S1, . . . ,Sr, x)

}
s.t. (Wi−1(S1)Wij)

Tx+ rij(S1) < 0 ∀(i, j) /∈ S1 ∪ · · · ∪ Sr
(Wi−1(S1)Wij)

Tx+ rij(S1) > 0 ∀(i, j) ∈ S1 ∩ · · · ∩ Sr
(Wi−1(S1)Wij)

Tx+ rij(S1) = 0 ∀(i, j) ∈ T(S1, . . . ,Sr)

yTl Θl(S1, . . . ,Sr(x)) = 0 ∀l = 1, . . . , r

yl ≥ 0 ∀l = 1, . . . , r

(2.27)

and checking whether the optimal value is nonnegative (safe) or negative (unsafe). This
nonlinear program is solved for each (S1, . . . ,Sr) ∈ V, where V is computed during the
enumeration phase.

Note that, if g(x) is constant, then the constraints of the nonlinear program are linear, and if
f(x) is linear then the problem reduces to solving a system of linear and bilinear inequalities.
Furthermore, if f(x) can be bounded over x ∈ X (S1) ∩ · · · ∩ X (Sr) and b(x) = 0, then this
bound can be used to derive a linear relaxation to the objective function of (2.27), thus
relaxing the nonlinear program to a linear program.

The complexity of this approach can also be reduced by utilizing sufficient conditions for safety
that are easier to check. For instance, if there exists u ∈ U such that W (S)T (f(x)+g(x)u) ≥ 0

38

for all S ∈ S(x), then the criteria of Lemma 2.7 are satisfied. In particular, if W (S)Tf(x) ≥ 0

for all S ∈ S(x), then the conditions are satisfied with u = 0.

The following result is a straightforward consequence of Proposition 2.2, Lemma 2.6, and
Lemma 2.7.

Theorem 2.3. Suppose that the conditions of Lemma 2.6 are satisfied for each S ∈ S and the
conditions of Lemma 2.7 are satisfied for each {S1, . . . ,Sr} ∈ V. Then the NCBF b satisfies
the conditions of Problem 2.1.

Proof. Suppose that x is a safety counterexample for the NCBF b with b(x) = 0. If
x ∈ intX (S) for some S, then we have that S ∈ S and hence a contradiction with Lemma
2.6. If x ∈ X (S1) ∩ · · · X (Sr) for some S1, . . . ,Sr, then there is a contradiction with Lemma
2.7.

Theorem 2.3 implies that, if passing the verification, then any control policy consistent with
barrier function b will be safe.

2.5.3 Efficient Verification

The efficient verification component takes the sets of boundary hyperplanes S and boundary
hinges V and checks that the conditions of Proposition 2.2 hold for each of them. As
pointed out after Proposition 2.2, the problem of searching for safety counterexamples can
be decomposed into searching for correctness, hyperplane, and hinge counterexamples. In
order to maximize the efficiency of our approach, we first consider the least computationally
burdensome verification task, namely, searching for correctness counterexamples. We then
search for hyperplane counterexamples, followed by hinge counterexamples.

Correctness Verification: The correctness condition ((2.19)) can be verified for boundary
hyperplane X (S) by solving the nonlinear program (2.28).

minx h(x)

s.t. W (S)Tx+ r(S) = 0, x ∈ X (S)
(2.28)

39

When h(x) is convex, (2.28) can be solved efficiently. Otherwise, dReal can be used to check
satisfiability of (2.28) in a tractable runtime.

Hyperplane Verification: Hyperplane counterexamples can be identified by solving the
optimization problem (2.29).

minx max {W (S)T (f(x) + g(x)u) : u ∈ U}
s.t. W (S)Tx+ r(S) = 0, x ∈ X (S)

(2.29)

Solving (2.29) can be made more efficient when additional structures on the input set U and
dynamics f and g are present. Consider a case U = {Dω : ||ω||∞ ≤ 1}. The bounded input
set U allows us to replace the maximization over u with L-1 norm term ∥W (S)Tg(x)D∥1,
which simplifies the computational complexity. In this case, the problem reduces to the
nonlinear program

min
x

W (S)Tf(x) + ∥W (S)Tg(x)D∥1

s.t. W (S)Tx+ r(S) = 0, x ∈ X (S)
(2.30)

If U = Rm, then by Corollary 2.1, the problem can be reduced to the nonlinear program

minx W (S)Tf(x)

s.t. W (S)Tg(x) = 0,W (S)x+ r(S) = 0, x ∈ X (S)
(2.31)

If f(x) and g(x) are linear in x, then the problem boils down to a linear program. If
bounds on the Lipschitz coefficients of f and g are available, then they can be used to derive
approximations of (2.30).

If g(x) is a constant matrix G, then safety is automatically guaranteed if W (S)TG ≠ 0. If
f(x) is linear in x as well, then (2.31) is a linear program.

Hinge Verification: The hinge V = {S1, . . . ,Sr} can be certified by solving the nonlinear
optimization problem (2.32).

minx max {W (Sl)
T (f(x) + g(x)u) : l = 1, . . . , r, u satisfies (2.16)–(2.17)}

s.t. x ∈ X (S1) ∩ · · · ∩ X (Sr),W (S1)
Tx+ r(S1) = 0

(2.32)

40

In practice, simple heuristics are often sufficient to verify safety of hinges without resorting
to solving (2.32). If W (S)Tf(x) > 0 for all x ∈ X (S1) ∩ · · · ∩ X (Sr), then the control input
u = 0 suffices to ensure safety. Furthermore, if U = Rm and there exists i ∈ {1, . . . ,m} and
s ∈ {0, 1} such that sign((W (Sl)

Tg(x))i) = s for all x ∈ X (S1) ∩ · · · X (Sr) and l = 1, . . . , r,
then u can be chosen as ui = Ks for some sufficiently large K > 0 to ensure that the
conditions of Proposition 2.2.

Enumerate boundary
hyperplanes using

NBFS (LP) Correctness
Verification (18)

Safety CE Sufficient Condition
Verification

Interval 𝒰 (20)

𝒰 ∈ ℝ! (21)

𝑺! = [1 1 0 … 1 0]
𝑺" = [1 1 1 … 0 0]
𝑺# = [1 1 0 … 0 0]
𝑺$ = [1 1 1 … 0 0]

⋮

Exact Condition
Verification for

Hyperplanes (19)

Fail
FailPass

{ 𝑺!, 𝑺$, 𝑺", 𝑺# ,
𝑺!, 𝑺$, 𝑺# }

Enumerate hinges (LP) Sufficient
Condition
Heuristics

Fail Exact Condition
Verification for

Hinges (22)

Safety Guarantee
Theorem 2

Pass

Pass

Safety CEFail

Safety CEFail

Pass

Figure 2.3: Overview of the Efficient Exact Verifier for ReLU NCBFs

EEV decomposes the NCBF into hyperplanes and hinges and verifies each component
hierarchically, with novel tractable sufficient conditions verified first and the more complex
exact conditions checked only if the sufficient conditions fail. Given an NCBF bθ(x), the
verification of EEV returns (i) a Boolean variable that is ‘true’ if the conditions of Proposition
2.2 are satisfied and ‘false’ otherwise, and (ii) a safety counterexample x̂ that violates the
conditions of Proposition 2.2 if the result is ‘false’. Algorithm 4 presents an overview of
the verification of EEV. The algorithm consists of an enumeration stage to identify all
boundary hyperplanes and hinges, and a verification stage to certify satisfaction of conditions
in Proposition 2.2 for all hyperplanes and hinges.

Safety Guarantee: The safety guarantees of our proposed approach are summarized in
Theorem 2.4.

Theorem 2.4. Given a NCBF bθ(x), bθ(x) is a valid NCBF if it passes the verification of
Algorithm 4 using dReal to solve the optimization problems (2.28), (2.29), and (2.32).

Proof. The proof is derived from completeness of the enumeration in Algorithm 4 and dReal.
By Lemma 2.5, the initial boundary activation set S0 is ensured to be identified by the EEV
in Line 4 Algorithm. 4. Given S0 and the enumeration in Line 5 and 6 Algorithm. 4 being
complete, the completeness of S and V is guaranteed by Proposition 2.3. By dReal solving

41

Algorithm 4 Efficient Exact Verification
1: Input: n, TX\C, TI
2: Output: Verification Boolean result r, Categorized counterexample x̂ce
3: procedure Efficient Exact Verification(TX\C, TI)
4: S0 ← ENUMINIT(TX\C, TI) ▷ Initial Activation Set Identification, Section 2.4.2
5: S ← NBFS(S0) ▷ Activation Sets Enumeration, Section 2.4.2
6: r, x̂

(c)
ce ← CorrectnessVerifier(S) ▷ Correctness Verification, Section 2.5.3

7: r, x̂
(h)
ce ← HyperplaneVerifier(S) ▷ Hyperplane Verification, Section 2.5.3

8: V ← HingeEnum(S, n) ▷ Hinges Enumeration, Section 2.4.2
9: r, x̂

(g)
ce ← HingeVerifier(V) ▷ Hinge Verification, Section 2.5.3

10: Return r, x̂ce
11: end procedure

the equivalent NLPs, the conditions of Proposition 2.2, are satisfied. Therefore, bθ(x) is a
valid NCBF

2.6 Experiment

2.6.1 Experiment Settings

In this section, we evaluate our proposed method to verify neural control barrier functions on
three systems, namely Darboux, obstacle avoidance and spacecraft rendezvous.

Darboux

We consider the Darboux system [96], a nonlinear open-loop polynomial system that has
been widely used as a benchmark for constructing barrier certificates. The dynamic model is
given in the supplement. We obtain the trained NCBF by following the method proposed
in [69]. We show the settings of NCBF verification for Darboux system whose dynamic is
defined as [

ẋ1

ẋ2

]
=

[
x2 + 2x1x2

−x1 + 2x21 − x22

]
. (2.33)

42

We define state space, initial region, and unsafe region as X : {x ∈ R2 : x ∈ [−2, 2]× [−2, 2]},
XI : {x ∈ R2 : 0 ≤ x1 ≤ 1, 1 ≤ x2 ≤ 2} and xU : {x ∈ R2 : x1 + x22 ≤ 0} respectively.

Obstacle Avoidance

We evaluate our proposed method on a controlled system [97]. We consider an Unmanned
Aerial Vehicles (UAVs) avoiding collision with a tree trunk. We model the system as a
Dubins-style [98] aircraft model. The system state consists of 2-D position and aircraft yaw
rate x := [x1, x2, ψ]

T . We let u denote the control input to manipulate yaw rate and the
dynamics defined in the supplement. We train the NCBF via the method proposed in [69] with
v assumed to be 1 and the control law u designed as u = µnom(x) = − sinψ+3 · x1·sinψ+x2·cosψ

0.5+x21+x
2
2

.
We next evaluate that our proposed method on a controlled system [97]. The system state
consists of 2-D position and aircraft yaw rate x := [x1, x2, ψ]

T . We let u denote the control
input to manipulate yaw rate and define the dynamics as ẋ1

ẋ2

ψ̇

 =

 v sinψ

v cosψ

0

+

 0

0

u

 . (2.34)

We define the state space, initial region and unsafe region as X , XI and XU , respectively as

X :
{
x ∈ R3 : x1, x2, ψ ∈ [−2, 2]× [−2, 2]× [−2, 2]

}
XI :

{
x ∈ R3 : −0.1 ≤ x1 ≤ 0.1,−2 ≤ x2 ≤ −1.8, −π/6 < ψ < π/6

}
XU :

{
x ∈ R3 : x21 + x22 ≤ 0.04

} (2.35)

Spacecraft Rendezvous

We evaluate our approach on a spacecraft rendezvous problem from [99]. A station-keeping
controller is required to keep the "chaser" satellite within a certain relative distance to the
"target" satellite. The state of the chaser is expressed relative to the target using linearized
Clohessy–Wiltshire–Hill equations, with state x = [px, py, pz, vx, vy, vz]

T , control input u =

[ux, uy, uz]
T and dynamics defined in the supplement. We train the NCBF as in [16]. The

state of the chaser is expressed relative to the target using linearized Clohessy–Wiltshire–Hill
equations, with state x = [px, py, pz, vx, vy, vz]

T , control input u = [ux, uy, uz]
T and dynamics

43

defined as follows.

ṗx

ṗy

ṗz

v̇x

v̇y

v̇z


=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0





px

py

pz

vx

vy

vz


+



0 0 0

0 0 0

0 0 0

1 0 0

0 1 0

0 0 1



 ux

uy

uz

 . (2.36)

We define the state space and unsafe region as X and XU , respectively as

X :
{
x ∈ R3 : p, v,∈ [−1.5, 1.5]× [−1.5, 1.5]

}
XU :

{
0.25 ≤ r ≤ 1.5, where r =

√
p2x + p2y + p2z

} (2.37)

We obtain the trained NCBF with neural CLBF training in [16] with a nominal model
predictive controller.

hi-ord8

We evaluate our approach on an eight-dimensional system that first appeared in [40] to
evaluate the scalability of proposed verification method. The dynamic model of the system is
captured by an ODE as follows.

x(8) +20x(7) +170x(6) +800x(5) +2273x(4) +3980x(3) +4180x(2) +2400x(1) +576 = 0 (2.38)

where we denote the i-th derivative of variable x by x(i). We define the state space and unsafe
region as X and XU , respectively as

X :
{
x21 + . . .+ x28 ≤ 4

}
XU :

{
(x1 + 2)2 + . . .+ (x8 + 2)2 ≤ 0.16

} (2.39)

We obtain the trained NCBFs with training method proposed in [40].

44

(a) (b) (c) (d)

Figure 2.4: Comparison of NCBFs that pass and fail the proposed verification. We show
0-level set boundary in blue, initial region in green and the unsafe region in red. (a) and (b)
visualize NCBFs for Darboux. (c) and (d) shows projection of NCBFs for Obstacle Avoidance.

2.6.2 LiRPA-based Verification Results

We first verify that D ⊆ C in the Darboux and obstacle avoidance scenarios. We trained four
1 hidden layer NCBFs with 20, 5, 32, 10 neurons, respectively. NCBF (a) and (c) completed
training, (b) terminated after 3 epochs and (d) terminated after 5 epochs. Our verification
algorithm identifies safety violations. NCBF (a) and (c) pass the verification while NCBF
(b) and (d) fail. As shown in Fig. 2.4a, the fully-trained NCBF (a) separates the safe and
unsafe regions while the NCBF (b) with unfinished training has a boundary that intersects
the unsafe region in Fig. 2.4b. As shown in Fig. 2.4d, the 2-D projection with ψ = −0.5 of
NCBF (d) shows its boundary overlap the unsafe region.

We next verify the positive invariance of D. The experiments run on a 64-bit Windows PC
with Intel i7-12700 processor, 32GB RAM and NVIDIA GeForce RTX 3080 GPU. All NCBFs
pass feasibility verification with run-time presented in Table 2.1. We compare the run-time of
proposed verification with SMT-based approaches using translator proposed in [40] and SMT
solver dReal [100] and Z3 [101]. The proposed method can verify NCBFs with more ReLU
neurons while SMT-based verifier return nothing. All of the generated NCBFs for obstacle
avoidance and spacecraft rendezvous passed the verification. The run-times are presented in
Table 2.2. We find that the activation set sizes grow with the size of neural network and the
state dimension n. We conjecture that this growth rate could be reduced by using tighter
approximations for the activated sets.

A key feature of our approach is that the verification process does not depend on the control
policy µ, but rather we verify that any µ satisfying (2.11)–(2.13) for all x ∈ ∂D is safe. This
improves flexibility while reducing false negatives in safety verification, as we illustrate in

45

Table 2.1: Comparison of verification run-time of NCBF in seconds. The table contains the
dimension n, network architecture with σ denoting ReLU, the number of activation sets
N and run-time of proposed method including time of enumerating, verification and total
run-time denoted as te, tv and T , respectively. We compare with the run-time of dReal
(TdReal) and Z3 (TZ3).

Case n NN Architecture N te tv T TdReal TZ3

Darboux

2 2-20-σ-1 13 0.39 0.04 0.43 0.36 >3hrs
2 2-32-σ-1 20 0.23 0.03 0.27 1.27 >3hrs
2 2-64-σ-1 47 1.89 0.13 2.02 >3hrs >3hrs
2 2-96-σ-1 63 4.17 0.14 4.31 >3hrs >3hrs
2 2-128-σ-1 65 4.77 0.03 4.90 >3hrs >3hrs
2 2-512-σ-1 258 33.44 0.61 34.05 >3hrs >3hrs
2 2-1024-σ-1 548 107.63 0.81 108.44 >3hrs >3hrs

Darboux

2 2-10-σ-10-σ-1 4 0.42 0.05 0.47 7.70 15.81
2 2-16-σ-16-σ-1 26 2.13 0.11 2.23 >3hrs >3hrs
2 2-32-σ-32-σ-1 58 8.35 6.28 14.64 >3hrs >3hrs
2 2-48-σ-48-σ-1 58 13.69 0.19 13.88 >3hrs >3hrs
2 2-64-σ-64-σ-1 102 31.30 0.47 31.77 >3hrs >3hrs
2 2-256-σ-256-σ-1 402 319.81 1.92 321.73 >3hrs >3hrs
2 2-512-σ-512-σ-1 1150 619.10 0.75 619.85 >3hrs >3hrs

hi-ord8
8 8-8-σ-1 98 3.70 0.02 3.72 >3hrs >3hrs
8 8-16-σ-1 37 35.05 0.0 35.05 >3hrs >3hrs

46

the following example. The NCBF for obstacle avoidance with one hidden layer and 32

neurons fails the SMT-based verification using dReal given nominal controller µnom. The
counter example is at the point (−0.20, 0,−0.73). At this point, we have b(x) = 0.0033,
∂b
∂x
f(x) = 0.0095, which satisfies the sufficient conditions for safety in Lemma 2.4. However,

the nominal controller yields ∂b
∂x
(f(x) + g(x)u) = −1.30 and hence fails verification. Hence,

by following a safe control policy of the form (2.14) with the learned value of b and nominal
policy µnom, we can retain the performance of µnom while still ensuring safety.

Table 2.2: Comparison of verification run-time of NCBF in seconds. We denote the run-time
as ‘UTD’ when the method is unable to be directly used for verification.

Case n NN Architecture N te tv T TdReal TZ3

OA

3 3-32-σ-1 436 6.94 0.40 7.35 >6hrs >6hrs
3 3-64-σ-1 1645 19.17 1.87 21.05 >6hrs >6hrs
3 3-96-σ-1 3943 58.96 6.26 65.22 >6hrs >6hrs
3 3-128-σ-1 5695 169.51 15.56 185.07 >6hrs >6hrs

OA

3 3-16-σ-16-σ-1 467 18.72 2.66 21.39 >6hrs >6hrs
3 3-32-σ-32-σ-1 1324 218.86 54.51 273.37 >6hrs >6hrs
3 3-48-σ-48-σ-1 3754 3197.59 9.75 3207.34 >6hrs >6hrs
3 3-64-σ-64-σ-1 6545 11730.28 18.22 11748.50 >6hrs >6hrs

SR
6 6-8-σ-8-σ-8-1 270 78.77 10.23 89.00 UTD UTD
6 6-16-σ-16-σ-16-1 32937 1261.60 501.06 1762.67 UTD UTD
6 6-32-σ-32-σ-32-1 207405 12108.11 1798.08 13906.19 UTD UTD

The computational complexity of our approach will be determined by several factors including
the dimension of the state, the number of layers, the number of neurons in each layer, and
the geometry of the 0-level set of the NCBF. As shown in Table 2.2, the dimension of the
system plays the most important role.

2.6.3 Exact Efficient Verification Results

The results presented in Table 2.3 illustrate a significant improvement in verification efficiency
for Neural Control Barrier Functions NCBFs using the proposed method. In the table
th represents the time spent searching for hyperplanes containing the CBF boundary and
verifying CBF sufficient conditions on these boundaries, and tg represents the time spent in
hinge enumeration and verification. The total time, T , is the sum of th and tg. We compare

47

Table 2.3: Comparison of verification run-time of NCBF in seconds. We denote the run-time
as ‘UTD’ when the method is unable to be directly used for verification.

Case n L M N th tg SEEV Baseline [39] dReal Z3

Darboux 2 2 256 15 2.5s 0 2.5s 315s >3h >3h
2 2 512 15 3.3s 0 3.3s 631s >3h >3h

OA

3 2 16 86 0.41s 0 0.41s 16.0s >3h >3h
3 4 8 15 0.39 0 0.39 16.1s >3h >3h
3 4 16 136 0.65s 0 0.65s 36.7s >3h >3h
3 1 128 5778 20.6s 0 20.6s 207s >3h >3h

hi-ord8

8 2 8 73 0.54s 0 0.54s >3h >3h >3h
8 2 16 3048 11.8s 0 11.8s >3h >3h >3h
8 4 16 3984 22.4s 0 22.4s >3h >3h >3h

SR 6 2 8 2200 7.1s 2.7s 9.8s 179s UTD UTD
6 4 8 4918 45.8s 14.3s 60.1s 298.7s UTD UTD

our approach with three baselines, exact verification [39], SMT-based verification [40] with
dReal and Z3. Baseline methods’ run times are represented by Baseline [39], dReal, and Z3.

In the Darboux cases, our method achieves verification in 2.5 seconds and 3.3 seconds for
M = 256 and M = 512 respectively, whereas baseline methods take substantially longer, with
Baseline [39] taking 315 seconds and 631 seconds, and both dReal and Z3 taking more than 3
hours. Similarly, in the OA cases, our method’s run times range from 0.39 seconds to 20.6
seconds, faster than the baseline methods. In the more higher dimensional systems high-ord8

and SR, our method significantly outperforms Baseline [39]. Specifically, in high-ord8 our
methods finishes within 22.4 seconds while Baseline [39], dReal and Z3 times out, due to the
need to enumerate the 8-dimensional input space. For the SR case, SEEV’s run time are 9.8
seconds and 60.1 seconds, beating Baseline [39] which takes 179 seconds and 298.7 seconds
respectively. Neural barrier certificate based dReal and Z3 are able to directly applicable
since they require an explicit expression of the controlled feedback system. However, the
SR system is manipulated by an NCBF-based safe controller that is nontrivial to derive an
explicit expression.

Note that hinge enumeration and certification may be time-consuming procedure, since they
involve enumerating all combinations of hyperplanes. However, the results from Table 2.3
show that the certification can be completed on most hyperplanes with sufficient condition
verification in Section 2.5.3, greatly improving the overall run time.

48

2.7 NCBF Synthesis with Efficient Exact Verification

In this section, we present the framework to synthesize NCBF bθ(x) to ensure the safety
of the system (2.1). The synthesis framework aims to train an NCBF and construct an
NCBF-based safe control policy. We first formulate the problem and present an overview of
the framework in 2.7.1. Then we demonstrate the design of the loss function in 2.7.2.

2.7.1 Overall Formulation

Our primary objective is to synthesize a ReLU Neural Control Barrier Function (ReLU-NCBF)
for (2.1) and develop a safe control policy to ensure system safety.

Problem 2.2. Given a system (2.1), initial set I and a safety set C, synthesize a ReLU
NCBF bθ(x) parameterized by θ such that the conditions in Proposition 2.2 are satisfied. Then
construct a control policy to synthesize ut such that the system remains positive invariant in
D := {x : bθ(x) ≥ 0} ⊆ C.

We propose Synthesis with Efficient Exact Verification (SEEV) to address this problem with
the synthesis framework demonstrated in Fig. 2.5. The training dataset T is initialized by
uniform sampling over X . The training framework consists of two loops. The inner loop
attempts to choose parameter θ for bθ(x) to satisfy the safety condition by minimizing the
loss function over training data T . The outer loop validates a given NCBF bθ(x) by searching
for safety counterexamples x̂ce and updates the training dataset as T ∪ {x̂ce}.

To train the parameters of the NCBF to satisfy the conditions of Proposition 2.2, we propose
a loss function that penalizes the NCBF for violating constraints (i) and (ii) at a collection
of sample points. The loss function is a weighted sum of three terms. The first term
is the correctness loss penalizing state x̂ ∈ X \ C with bθ(x) ≥ 0. The second term is
verification loss that penalizes states x̂ that ∄u such that (2.16)-(2.18) hold. The third term is
a regularizer minimizing the number of hyperplanes and hinges along the boundary. However,
minimizing the loss function is insufficient to ensure safety [89] because there may exist
safety counterexamples outside of the training dataset. In order to guarantee safety, SEEV
introduces an efficient exact verifier to certify whether bθ(x) meets the safety conditions

49

outlined in Proposition 2.2. The verifier either produces a proof of safety or generates a safety
counterexample that can be added to the training dataset to improve the NCBF.

The integration of the verifier can improve safety by adding counterexamples to guide the
training process, however, it may also introduce additional computation complexity.

We propose a combined approach, leveraging two complementary methods to address this
issue. First, the verification of SEEV introduces an efficient algorithm in Section 2.4 to
mitigate the computational scalability challenges that arise as neural network depth and
dimensionality increase. Second, SEEV introduces a regularizer to limit the number of
boundary hyperplanes and hinges to be verified, addressing the complexity that arises as
neural network size increases.

Enumeration
Sec. 4.1

Efficient
Verification

Sec. 4.2

Training
Dataset

NCBF
Training
Sec. 3

NCBF

Hyperplanes
& Hinges

Yes

NoCounterexamples

Valid
NCBF

(i)	in
Proposition	1

(ii)	in
Proposition	1

Boundary	
Activation	
Regularizer

Figure 2.5: SEEV: Synthesis with Efficient Exact Verifier for ReLU NCBF

2.7.2 Loss Function Design and NCBF Training

The goal of the inner loop is to choose parameters θ so that the conditions of Proposition
2.2 are satisfied for all x̂ ∈ T and the computational cost of verifying safety is minimized.
To achieve the latter objective, we observe (based on results presented in Table 2.4) that
the computational complexity of verification grows with the cardinality of the collection
of activation sets that intersect the safety boundary ∂D. The collection is defined as
B := {Si : ∂D ∩ X (Si) ̸= ∅}. Hence, we formulate the following unconstrained optimization
problem to search for θ.

min
θ

λBLB(T) + λfLf (T) + λcLc(T) (2.40)

50

where LB(T) regularizer to minimize |B|, Lf(T) is the loss penalizing the violations of
constraint (2.16)-(2.18) ((i) of Proposition 2.2), Lc(T) penalizes the violations of constraint
(2.19) ((ii) of Proposition 2.2), and λB, λf and λc are non-negative coefficients defined as
follows.

Lf Regularizer: For each sample x̂ ∈ T the safe control signal is calculated by

min
u,r

||u− πnom(x)||22 s.t. W(Sl)
T (f(x̂) + g(x̂)u) + r ≥ 0 (2.41)

where W = W for differentiable points and W = W̃ defined as the subgradient at non-
differentiable points. The regularizer Lf enforces the satisfaction of the constraint by inserting
a positive relaxation term r in the constraint and minimizing r with a large penalization in
the objective function. We have the loss Lf defined as Lf = ||u − πnom(x)||22 + r. We use
[102] to make this procedure differentiable, allowing us to employ the relaxation loss into the
NCBF loss function design.

Lc Regularizer: Lc regularizer enforces the correctness of the NCBF. In particular, it
enforces the bθ(x) of safe samples x ∈ TI to be positive, and bθ(x) of unsafe samples TX\C

to be negative. Define Nsafe = |TI | and Nunsafe = |TX\C|, and with a small positive tuning
parameter ϵ > 0, the loss term Lc can be defined as

Lc = a1
1

Nsafe

∑
x∈TI

[ϵ− bθ(x)]+ + a2
1

Nunsafe

∑
x∈TX\C

[ϵ+ bθ(x)]+ (2.42)

where [·]+ = max(·, 0). a1 and a2 are positive parameters controlling penalization strength of
the violations of safe and unsafe samples.

LB Regularizer: We propose a novel regularizer to limit the number of boundary hyperplanes
and hinges by penalizing the dissimilarity, i.e., S(x̂i)∆S(x̂j) of boundary activation sets
S(x̂) ∈ B. However, the dissimilarity measure of boundary activation sets is inherently
nondifferentiable. To address this issue the regularizer introduces the generalized sigmoid
function σk(z) = 1

1+exp(−k·z) to compute the vector of smoothed activation defined as ϕσk(x) :=
[σk(zi,j),∀i, j ∈ {1, . . . , L} × {1, . . . ,Mi}]. The LB regularizer conducts the following two
steps to penalize dissimilarity.

51

1.0
0.5

0.0
0.5

1.0X0 1.0
0.5

0.0
0.5

1.0

X1

0.25
0.00
0.25
0.50
0.75
1.00

(a) r = 0

1.0
0.5

0.0
0.5

1.0X0 1.0
0.5

0.0
0.5

1.0

X1

0.25
0.00
0.25
0.50
0.75
1.00

(b) r = 50

Figure 2.6: Effects of boundary regularization (r) on activation sets along the boundary. The
figures show the results from a neural network with 4 layers of 8 hidden units, applied to the
Spacecraft case. The surface represents the first two dimensions with the last four dimensions
fixed at 0. Increasing r results in more organized boundary activation sets.

In the first step, the regularizer identifies the training data in the boundary hyperplanes and
hinges denoted as x̂ ∈ T∂D. The set is defined as T∂D := {x̂ : x̂ ∈ X (S),∀S ∈ B}. To further
improve the efficiency, the regularizer approximates T∂D with a range-based threshold ϵ on
the output of the NCBF, i.e., |bθ(x̂)| ≤ ϵ.

The second step is to penalize the dissimilarity of S ∈ B. To avoid the potential pitfalls of
enforcing similarity across the entire boundary B, the regularizer employs an unsupervised
learning approach to group the training data into NB clusters. We define the collection of the
activation set in each cluster as Bi ⊆ B and the collection in each cluster as TBi

:= {x̂ : x̂ ∈⋃
S∈Bi
X (S)}. The LB is then defined as follows, with an inner sum over all pairs of x̂ ∈ TBi

and an outer sum over all clusters.

LB =
1

NB

∑
Bi∈B

1

|TBi
|2

∑
x̂i,x̂j∈TBi

∥ϕσk(xi)− ϕσk(xj)∥22, (2.43)

2.7.3 SEEV Evaluation

Table 2.4 and Figure 2.6 illustrates the impact of regularization on the CBF boundary’s
activation sets. Table 2.4 compares various configurations, where n denotes the input
dimensions, L represents the number of layers, and M indicates the number of hidden units
per layer. No and Nr are the number of hyperplanes along the zero-level boundary of the
CBF without and with regularization, respectively, with r indicating the regularization

52

Table 2.4: Comparison of N the number of boundary hyperplanes and C coverage of the safe
region D of NCBF trained with and without boundary hyperplane regularizer denoted with
subscripts r and o.

Case n L M No Co Nr=1 ρr=1 Nr=10 ρr=10 Nr=50 ρr=50

OA

3 2 8 26 89.46% 25 0.996 23.3 0.994 13.3 1.006
3 2 16 116 83.74% 119 1.012 111 1.005 98 1.055
3 4 8 40 91.94% 38 0.988 36 0.993 13 0.937
3 4 16 156 87.81% 170 0.971 147 1.003 64 1.038

SR
6 2 8 2868 98.58% 2753 1 1559 1 418 1
6 4 8 6371 98.64% 6218 1 3055 1 627 1
6 2 16 N/A N/A 204175 N/A 68783 N/A 13930 N/A

strength. Co captures the CBF’s coverage of the safe region, while ρ(·) = C(·)/Co represents
the safety coverage ratio relative to the unregularized CBF. Notably, "N/A" entries indicate
configurations where training a fully verifiable network was infeasible due to the excessive
number of boundary hyperplanes, which leads the verification process to time out.

The results demonstrate that regularization effectively reduces the number of activation
sets along the CBF boundary without compromising the coverage of the safe region. The
efficiency is especially improved in cases with a greater number of hidden layers, where the
unregularized model results in a significantly higher number of hyperplanes. For instance,
in the SR case with n = 6, L = 4, and M = 8, the regularization reduces Nr=50 to 627

from No = 6218, maintaining the same safety coverage (ρr=50 = 1). See Appendix 2.7.3 for
hyperparameter sensitivity analysis.

Figure 2.6 illustrates the level sets of two CBFs trained for the SR case with n = 6, L = 4,
and M = 8. These level sets are extracted from the first two dimensions with the rest set
to zero. Each colored patch represents an activation pattern. The regularizer organizes
the activation sets around the boundary, reducing unnecessary rapid changes and thereby
enhancing the verification efficiency.

The experimental results presented in Table 2.5 demonstrate the effectiveness of Counter
Example (CE) guided training on Darboux and hi-ord8 system. In this method, after each
training epoch, we calculate the Control Barrier Function (CBF) outputs on representative
samples. If the CBF correctly categorizes the samples into safe and unsafe regions, the

53

certification procedure is initiated. If the CBF fails certification, the counter example is
added to the training dataset for retraining. Otherwise, training is stopped early.

We capped the maximum training epochs at 50 and conducted three rounds of training for
each network structure and system using different random seeds. The results indicate that
without CE, the training process could basrely generate a CBF that passes certification. In
contrast, with CE enabled, there was a success rate of at least 1/3 for most network structure,
with verifiable policies generated in as few as 10 epochs. This highlights the improvement in
training efficiency and reliability with the incorporation of CEs.

Case L M
No CE With CE

sr sr min epoch

Darboux

2 8 0/3 3/3 38
2 16 0/3 1/3 10
4 8 0/3 1/3 43
4 16 0/3 2/3 26

hi-ord8

2 8 1/3 1/3 15
2 16 0/3 2/3 19
4 8 0/3 0/3 -
4 16 0/3 2/3 13

Table 2.5: Success rates (sr) and minimum epochs required for certification with and without
Counter Example (CE) guided training for different network structures on Darboux and
hi-ord8 systems.

Hyperparameters

Table 2.6 shows values the following hyperparameters used during CBF synthesis:

• Ndata: number of samples to train CBF on.

• a1: weight penalizing incorrect classification of safe samples in Equation 2.42.

• a2: weight penalizing incorrect classification of unsafe samples Equation 2.42.

• λf : weight penalizing violation of Lie derivative condition of CBF in Equation 2.40.

• λc: weight penalizing correct loss for in Equation 2.40.

• ncluster: number of clusters in LB regularization.

54

• kσ: value of k used in generalized sigmoid function to perform differentiable activation
pattern approximation.

• ϵboundary: the threshold for range-based approximation of CBF boundary.

Case Ndata a1 a2 λf λc ncluster kσ ϵboundary

Darboux 5000 100 100 4.0 1.0 N/A N/A N/A
hi-ord8 50000 100 200 1.0 1.0 N/A N/A N/A
OA 10000 100 100 2.0 1.0 5 4 1.0
SR 10000 100 100 2.0 1.0 5 4 1.0

Table 2.6: Hyperparameters of CBF synthesis.

Sensitivity Analysis of Hyperparameters

λc SR ME N
1 0/3 x x
10 0/3 x x
100 3/3 17 3265
200 3/3 17.7 2922

(a) Ablation study on λc

λf SR ME N
1 3/3 16.3 3254
2 3/3 17 3265
4 3/3 17 3352
8 2/3 29.5 3419.5

(b) Ablation study on λf

k SR ME N
1 3/3 18 3842
2 3/3 15.7 3523
4 3/3 17 3265
8 1/3 10 1984

(c) Ablation study on k

Table 2.7: Ablation study for training hyperparameters. In each table, the bold lines indicate
the baseline setting. SR: the success rate among runs with three random seeds. ME: the
average first training epoch when a valid NCBF is obtained. N: the average number of
boundary hyperplanes.

Next, we performed a sensitivity analysis of the hyperparameters. We chose the case study
of Spacecraft Rendezvous with the number of layers L = 4 and the number of hidden
units per layer N = 8. We studied the sensitivity of the training performance to the
hyperparameters λB, λf , and λc in Equation 8, corresponding to the weightings for regularizing
the number of boundary hyperplanes, NCBF value violation, and NCBF Lie derivative
violation, respectively. We also studied the sensitivity to the hyperparameter k employed in
the modified sigmoid function σk(z) = 1

1+exp(−k·z) to approximate the regularization pattern.
We compared against the settings: λB = 10, λf = 2, λc = 100, and k = 4. For each
hyperparameter, we chose four values to perform the ablation study: λB ∈ {0, 1, 10, 50},
λf ∈ {1, 2, 4, 8}, λc ∈ {1, 10, 100, 200}, and k ∈ {1, 2, 4, 8}. For each setting, we performed
three runs with different random seeds. We measured the results by Success Rate (SR),
Min Epoch (ME), and N, as described in the caption of Table 2.7.

55

λc regularizes the shape of the NCBF by penalizing incorrectly categorized samples. Table 2.7a
indicates that when λc is too small, the training procedure fails to train an NCBF that
correctly separates the safe and unsafe regions, resulting in failure of certification. Meanwhile,
a larger weight delivers similarly good performance.

λf penalizes violations of Lie derivative conditions. Table 2.7b shows that the result is not
sensitive to this hyperparameter, as this term quickly goes down to 0 when the Lie derivative
condition is satisfied. We note that over-penalizing this condition should be avoided since
the NCBF would otherwise learn an unrecoverable incorrect shape, as demonstrated by the
failure case when λf = 8.

λB the boundary regularization term reduces the number of boundary hyperplanes and
benefits convergence.

Table 2.7c shows the importance of the term k used in the modified sigmoid function. Since
this term appears in the exponential part of the sigmoid function, when it is too large, it
leads to gradient explosions during backpropagation, which crashes the training process.
Conversely, a reasonably larger k better approximates the activation pattern, leading to a
reduced number of boundary hyperplanes.

In summary, balancing the hyperparameters is relatively straightforward, as the training
performance remains robust across a wide range of hyperparameter values. When training
failures do occur, we can systematically identify the cause from observation. This enables
proper guidance in choosing and adjusting the appropriate hyperparameters.

2.8 Conclusion

This chapter studied the problem of synthesizing and verifying safety of a nonlinear control
system using a NCBF represented by a feed-forward neural network with ReLU activation
function. We leveraged a generalization of Nagumo’s theorem for proving invariance of sets
with nonsmooth boundaries to derive necessary and sufficient conditions for safety. The exact
safety conditions addressed the issue that ReLU NCBFs will be nondifferentiable at certain
points, thus invalidating traditional safety verification methods. Based on this condition, we
proposed an algorithm for safety verification of NCBFs that first decomposes the NCBF into

56

piecewise linear segments and then solves a nonlinear program to verify safety of each segment
as well as the intersections of the linear segments. We mitigated the complexity by only
considering the boundary of the safe region and pruning the segments with IBP and LiRPA.
To further mitigate the computational complexity, we proposed Synthesis with Efficient
Exact Verification (SEEV), which co-designs the synthesis and verification components to
enhance scalability of the verification process. We augment the NCBF synthesis with a
regularizer that reduces the number of piecewise-linear segments at the boundary, and hence
reduces the total workload of the verification. We then propose a verification approach that
efficiently enumerates the linear segments at the boundary and exploits tractable sufficient
conditions for safety. We evaluated our approach through numerical studies with comparison
to state-of-the-art SMT-based methods.

Limitations: The method proposed in this chapter mitigated the scalability issue. However,
the synthesis and verification of NCBFs for higher-dimensional systems is challenging. Exact
verification of non-ReLU NCBFs, which lack ReLU’s simple piecewise linearity, remains an
open problem.

57

Chapter 3

Neural Control Barrier Functions For
Stochastic Systems

In the previous chapter, we proposed NCBF synthesis and verification for deterministic
systems. However, real systems must operate in the presence of stochastic noise, which
could invalidate safety guarantees derived from deterministic NCBFs. Existing works on the
verification of the NCBF focus on the synthesis and verification of NCBFs in deterministic
settings, leaving the stochastic NCBFs (SNCBFs) less studied.

In this chapter, we propose a training framework to synthesize provably valid NCBFs for
continuous-time, stochastic systems. Our methodology establishes completeness guarantees
by deriving a validity condition, which ensures efficacy across the entire state space with
only a finite number of data points. We consider the cases of smooth SNCBFs with twice-
differentiable activation functions and SNCBFs that utilize ReLU activation functions. We
also propose a verification-free synthesis framework for smooth SNCBFs and a verification-
in-the-loop synthesis framework for both smooth and ReLU SNCBFs. We validate our
frameworks in three cases, namely, the inverted pendulum, Darboux, and the unicycle model.
We make the following contributions towards synthesizing and verifying NCBFs for stochastic
systems.

• We formulate the verification of smooth SNCBFs with twice-differentiable activation
functions as nonlinear programs that can be solved by Satisfiability Modulo Theories
(SMT) solvers.

• We introduce the Stochastic NCBF (SNCBF) with ReLU activation functions and
derive sufficient safety conditions using Tanaka’s formula.

58

• We utilize the piecewise linearity of ReLU NNs, formulate the verification of ReLU
SNCBFs as nonlinear programs and propose practical algorithms for efficient verification.

• We frame the VITL synthesis with efficient verifiers for both smooth and ReLU NCBFs
synthesis. The VITL relaxes the dense sampling and single-layer assumption of the
smooth SNCBF.

• We validate our approach in three cases, namely, the inverted pendulum, Darboux, and
the unicycle model. The experiments illustrate that both smooth and ReLU SNCBFs
can output verifiably safe results while covering a larger safe subset compared to the
baseline approach of a Fault-Tolerant SNCBF without VITL.

The remainder of this chapter is organized as follows. Section 3.1 presents the dynamics
model and preliminary results. Section 3.2 presents the verifiable synthesis, verification,
and VITL synthesis of SNCBFs with smooth activation functions. Section 3.3 introduces
ReLU SNCBFs with sufficient safety conditions, derives verification conditions, and VITL
synthesis. Section 3.4 presents the validation of the proposed methods with experimental
settings, results, and comparison in three case studies. Section 3.5 concludes the chapter.

3.1 Preliminaries

In this section, we introduce the system model, stochastic control barrier functions (SCBFs),
and needed mathematical background.

3.1.1 System Model

We consider a continuous time stochastic control system with state xt ∈ X ⊆ Rnx and input
ut ∈ U ⊆ Rnu at time t ≥ 0 with a dynamic model formulated by the following stochastic
differential equation (SDE):

dxt = (f(xt) + g(xt)ut) dt+ V dvt, (3.1)

59

where f : Rnx → Rnx and g : Rnx → Rnx×nu are locally Lipschitz, vt is nv-dimensional
Brownian motion and V ∈ Rnx×nv . We make the following assumptions on system (3.1).

Assumption 3.1. There exists an initial state x̂ ∈ X such that P[x0 = x̂] = 1. The SDE
(3.1) admits a unique strong solution.

We denote the state space without obstacles as a safe set XS and let XU = X/XS be
the unsafe set. The safe set is defined as the super-0-level set of a differentiable function
h : X ⊆ Rnx → R, yielding

XS = {x ∈ X : h(x) ≥ 0} (3.2)

XU = {x ∈ X : h(x) < 0}. (3.3)

We further let the interior and boundary of XS be Int (XS) = {x ∈ X : h(x) > 0} and
∂XS = {x ∈ X : h(x) = 0}, respectively.

Function Definitions: We next present the definitions of class-κ functions, extended class-κ
functions, and indicator functions. A continuous function α : [0, d)→ [0,∞) for some d > 0

is said to belong to class-κ if it is strictly increasing and α(0) = 0. Here, d is allowed
to be ∞. If function can be extended to the interval α : (−b, d) → (−∞,∞) with b > 0

(which is also allowed to be ∞), we call it an extended class-κ function denoted as κ∞.
We denote the indicator function as 1C(x) which takes the value of 1 if x ∈ C and 0 if
x /∈ C. Let ω denote a scalar variable and a denote a constant scalar. We use the indicator
function for logical operations, i.e., 1ω>a(x), which takes the value of 1 when ω > a. Let
{ω − a}+ := max{ω − a, 0} and {ω − a}− := −min{ω − a, 0}

Notations: We denote the stochastic process of the state x as xt and let x0 represent the
initial state. Let [·]i denote the i-th row of a matrix or the i-th item of a vector. For simplicity,
we use = 0, and ≥ 0 to represent the vector element-wise = 0, and ≥ 0, respectively.

3.1.2 Preliminaries on Stochastic Processes

We next present concepts from stochastic processes, namely, Tanaka’s formula and the
infinitesimal generator, which we will use later to derive the safety conditions for our ReLU
SNCBF.

60

Any strong solution of an SDE is a semimartingale. Let ωt denote a scalar continuous
semimartingale process. The following Tanaka’s formula explicitly links the local time of a
semimartingale to its behavior.

Theorem 3.1 (Tanaka’s Formula [103], Ch. 6, Theorem 1.2). For any real number a, there
exists an increasing continuous process Lat called the local time of ωt in a, such that,

|ωt − a| = |ω0 − a|+
∫ t

0

sgn (ωs − a) dωs + Lat

{ωt − a}+ = {ω0 − a}+ +

∫ t

0

1(ωs>a)dω +
1

2
Lat

{ωt − a)}− = {ω0 − a}− −
∫ t

0

1(ωs≤a)dωs +
1

2
Lat .

A detailed treatment of semimartingales and Tanaka’s formula can be found in [103]. Consider
a function B : Rnx → R mapping from a state x to a scalar. The infinitesimal generator of B
is defined as follows.

Definition 3.1 (Infinitesimal generator). Let xt be the strong solution to (3.1). The infinites-
imal generator A of xt is defined by

AB(x) = lim
t↓0

E [B (xt) | x0 = x]−B(x)

t
; x ∈ Rnx

where B(x) is in a set of functions D(A) (called the domain of the operator A) such that the
limit exists at x.

We make the following assumption on B(x).

Assumption 3.2. We assume the function B(x) is in the domain of the operator D(A).
Specifically, the following two conditions are satisfied in D(A).

• The expectation E [B (xt) | x0 = x] is well-defined and finite.

• The limit defining AB(x) exists for every x ∈ X .

We note that D(A) = Rnx if B(x) is twice differentiable.

61

3.1.3 Stochastic Control Barrier Functions

The control policy must ensure that the system adheres to a safety constraint defined by the
positive invariance of a specified safety region XS.

Control Barrier Functions for Stochastic Systems

We introduce the stochastic CBF (SCBF) for stochastic systems by presenting the definition
of stochastic (zeroing) CBF and SCBF-QP.

Definition 3.2 (Stochastic Zeroing CBF). A continuously differentiable function B : X → R
is called a stochastic zeroing control barrier function for system (3.1) if the following conditions
are satisfied.

• B(x) ∈ D(A);

• B(x) ≥ 0 for all x ∈ D ⊆ XS;

• B(x) < 0 for all x /∈ D;

• there exists an extended κ∞ function α such that

sup
u∈U

[AB(x) + α(B(x))] ≥ 0.

Let D := {x : B(x) ≥ 0} to denote the super-0-level-set of the function B(x).

The SCBF-QPs are regarded as safety filters which take the control input from a reference
controller uref (x, t) and modify it so that it abides by our constraint of positive invariance:

u∗(x, t) = min
u∈U
∥u− uref (x, t)∥2

s.t. AB(x) + α(B(x)) ≥ 0.
(3.4)

Control signals satisfying SCBF-QP ensure probabilistic positive invariance of the set D.

Next, we present the worst-case probability estimation.

62

Proposition 3.1 ([104, Proposition III.5]). Suppose the map B(x) is a Stochastic CBF with
a linear class-α function (where α(x) = kx; k > 0), and the control strategy as Uz = {u ∈ U :

AB(x) + kB(x) ≥ 0}. Let c = supx∈C B(x) and x0 ∈ int(D), then under any u ∈ Uz we have
the following worst-case probability estimation:

P [xt ∈ int(D), 0 ≤ t ≤ T] ≥
(
B(x0)

c

)
e−cT .

Neural CBFs

In what follows, we briefly review the concept of Neural CBF from Chapter. 2. CBFs that are
defined by neural networks, denoted as Neural Control Barrier Functions (NCBFs), have been
proposed to leverage the expressiveness of NNs. We consider a θ-parameterized feedforward
neural network Bθ : Rnx → R constructed as follows. The network consists of L layers,
with each layer i consisting of Mi neurons. We let (i, j) ∈ {1, . . . , L} × {1, . . . ,Mi} denote
the j-th neuron at the i-th layer. We let W and r denote the weight and bias of a neural
network, and let θ be a parameter vector obtained by concatenating W and r. We denote
the pre-activation input of node j in layer i as z(i)j and the activation function σ.

An NCBF synthesized for a stochastic system is referred to as SNCBF. In this paper, we
consider two types of SNCBFs: smooth SNCBFs and ReLU SNCBFs. An SNCBF is a smooth
SNCBF if all its activation functions σ(·) are smooth functions, i.e., tanh(x), Sigmoid, Softmax.
An SNCBF is a ReLU SNCBF if all its activation functions are ReLU, i.e., σ(x) = max{x, 0}.
For simplicity, we use the short-hand notation B(x) to denote Bθ for the rest of the paper.

The piece-wise linearity of ReLU NN allows us to have a linear expression to represent
the input-output relationship of the NN with the activated neurons. We denote zi as the
pre-activation input vector of the i-th layer.

zij(x) =

W T
1jx+ r1j, i = 1

W T
ijσ(zi−1(x)) + rij, i ∈ {2, . . . , L− 1}

where σ is an elementary activation function. We denote zijt = zij(xt). The output of the
network is given by B(x) = W T

L zL + rL. The j-th neuron at the i-th layer is activated by a
particular input x if its pre-activation input is positive, inactivated if the pre-activation input

63

is negative, and unstable if the pre-activation input is zero. An activated set S = {S1, . . . ,SL}
denotes the set of neurons Si ⊆ {1, . . . ,Mi} that are activated at the i-th layer. For the first
layer, we have

W 1j(S) =

{
W1j, j ∈ S1

0, else
r1j(S) =

{
r1j, j ∈ S1

0, else.

We recursively define W ij(S) and rij(S) by letting Wi(S) be a matrix with columns
W i1(S), . . . ,W iMi

(S).

The ReLU NN can be decomposed into hyperplanes and hinges. The hyperplane characterized
by an activated set S is defined as [39, Lemma 1]

X (S) ≜
L⋂
i=1

(⋂
j∈Si

{x : W T
ij (Wi−1(S)x+ ri−1) + r1j ≥ 0}

∩
⋂
j /∈Si

{x : W T
ij (Wi−1(S)x+ ri−1) + r1j ≤ 0}

 . (3.5)

We denote the hinges, the regions at the intersections of hyperplanes with unstable neurons,
by T. For example, the hinge characterized by S1, . . . ,Sr is defined as follows.

T(S1, . . . ,Sr) :=

(
r⋃
l=1

X (Sl)

)
\

(
r⋂
l=1

X (Sl)

)
.

We write that S1, . . . ,Sr is complete if for any T′ ⊆ T(S1, . . . ,Sr), (
⋂r
l=1X (Sl)) ∪ T′ ⊆

{X (S1), . . . ,X (Sr)}.

3.1.4 Preliminary Results

We next present preliminary results from Positivestellensatz and Farkas’ Lemma. These
results will be used to derive the verification conditions for SNCBFs. The polynomial p(x) is
Sum-Of-Squares (SOS) if and only if it can be written as

p(x) =
n∑
i=1

(pi(x))
2

64

for some polynomials pi(x).

We next present the required background on real algebraic geometry. For certifying non-
negative polynomials, the cone is generated from a set of polynomials ϕ1, . . . , ϕkΣ is given
by

Σ[ϕ1, . . . , ϕkΣ] =

 ∑
K⊆{1,...,kΣ}

γK(x)
∏
i∈K

ϕi(x) : γK(x) ∈ SOS ∀K ⊆ {1, . . . , kΣ}

 .

The monoidM generated from a set of polynomials χ1, . . . , χkM with non-negative integer
exponents r1 . . . rkM is defined as

M[χ1, . . . , χkM] =

{
kM∏
i=1

χri(x) : r1 . . . rkM ∈ Z+

}
.

The ideal generated from polynomials Γ1, . . . ,ΓkI is given by

I[Γ1, . . . ,ΓkI] =

{
kI∑
i=1

pi(x)Γi(x) : p1, . . . , pkI are polynomials

}
.

The following theorem shows that the emptiness of a set formed by the polynomials described
above is equivalent to the existence of polynomials within their respective cone, square of
monoid, and ideal such that their sum is equal to zero.

Theorem 3.2 (Positivstellensatz [105]). Let (ϕi)j=1,...,kΣ
, (χj)k=1,...,kM

, (Γℓ)ℓ=1,...,kI
be finite

families of polynomials. Then, the following properties are equivalent:

1. The set  x ∈ Rnx

ϕi(x) ≥ 0, i = 1, . . . , kΣ

χj(x) ̸= 0, j = 1, . . . , kM

Γl(x) = 0, l = 1, . . . , kI

 (3.6)

is empty.

2. There exist ϕ ∈ Σ, χ ∈M,Γ ∈ I such that ϕ+ χ2 + Γ = 0.

65

3.2 Smooth Stochastic Neural Control Barrier Functions

In this section, we present the synthesis of SNCBF with smooth activation functions. Our
approach assumes that the NN employs smooth (i.e., twice differentiable) activation functions
so that its Jacobian and Hessian are well-defined. The synthesis procedure is developed in
two frameworks: (i) verifiable synthesis and (ii) VITL synthesis with a novel verification for
smooth SNCBFs.

Problem 3.1. Given a continuous-time stochastic control system defined as (3.1), a desired
confidence level η, state space X , initial safe set and the unsafe set XI ⊆ XS and XU = X \XS,
respectively, devise an algorithm that synthesizes a stochastic neural CBF (SNCBF) B(x)

with continuously differentiable (smooth) activation functions. In particular, the SNCBF
must satisfy the following worst-case probability guarantee:

P [xt ∈ int(D), 0 ≤ t ≤ T | x0 ∈ int(D)] ≥ 1− η.

Our strategy to address Problem 3.1 is to (i) perform a verifiable synthesis of the SNCBF
under a set of initial assumptions, (ii) relax some of these assumptions by introducing
verification conditions, and (iii) propose a synthesis loss function that embeds verification
into the learning loop.

To facilitate the synthesis and verification of an SNCBF that meets the safety criteria in
Problem 3.1, it is essential to analyze how the barrier function evolves along the trajectories of
the stochastic system. In continuous-time settings, the following lemma provides the precise
expression for the infinitesimal generator of an SNCBF with smooth activation functions:

The infinitesimal generator of an SNCBF (SNCBF) B(x) with twice-differentiable activation
functions is given by [106] as:

AB =
∂B

∂x
(f(x) + g(x)u) +

1

2
tr

(
V ⊺∂

2B

∂x2
V

)
. (3.7)

66

3.2.1 Smooth SNCBF Verifiable Synthesis

The conditions of Problem 3.1 are satisfied if we can synthesize a NN B(x) parameterized
by θ to represent our SCBF. We denote control policy µ : Rnx → Rnu as a mapping from
the state xt to a control input ut = µ(xt) at each time t. B(x) ensures safety by imposing
conditions on system states and control inputs defined as follows.

B(x) ≥ 0,∀x ∈ XI ,

B(x) < 0, ∀x ∈ XU ,
∂B(x)

∂x
(f(x) + g(x)u) +

1

2
tr

(
V ⊺∂

2B

∂x2
V

)
+ α (B(x)) ≥ 0,∀x ∈ D. (3.8)

To approach Problem 3.1, we make the following assumptions in Section 3.2.1.

Assumption 3.3. For the smooth SNCBF verifiable synthesis, we assume that

1. The function B(x), ∂B
∂x

, ∂2B
∂x2

and control policy µ are Lipschitz continuous.

2. The SNCBF B(x) is a feedforward NN with one hidden layer and twice differentiable
activation function.

3. V is a nx × nx diagonal matrix.

4. The derivative of each activation function is lower bounded by σ′ and upper bounded by
σ′.

Next, we formulate our verifiable synthesis of B(x) as a robust optimization problem (ROP)
with auxiliary variable ψ:

ROP :


min
ψ

ψ

s.t. max (qk(x)) ≤ ψ, k ∈ {1, 2, 3}

∀x ∈ X , ψ ∈ R,

(3.9)

67

where
q1(x) = (−B(x))1XI

(x),

q2(x) = (B(x) + δ)1XU
(x),

q3(x) =−
∂B

∂x
(f(x) + g(x)u)− 1

2
tr

(
V ⊺∂

2B

∂x2
V

)
− α(B(x)),

(3.10)

where δ is a small positive scalar ensuring strict inequality. The ROP in (3.9) inherently
involves infinitely many constraints due to the continuous nature of the state space X .

To approximate the solution, we employ the scenario optimization program (SOP), which
replaces the ROP with a finite number of sampled constraints. Given a scalar ϵ̄, we uniformly
sample N data points xi ∈ X , i ∈ {1, . . . , N}. Let ϵ̄ be a positive scalar. We sample points
dense enough such that ∥x− xi∥ ≤ ϵ̄ for any x ∈ D and some xi. We then solve:

SOP :



min
ψ

ψ

s.t. q1 (xi) ≤ ψ,∀xi ∈ S,

q2 (xi) ≤ ψ,∀xi ∈ U ,

q3 (xi) ≤ ψ,∀xi ∈ D,

ψ ∈ R

(3.11)

where qk(x), k ∈ 1, 2, 3 are as defined in (3.10), and the data sets S,U , and D correspond
to points sampled from the initial safe set XI , initial unsafe set XU , and state space X ,
respectively.

Since SOP is a linear program in the decision variable ψ, a feasible solution can be obtained,
denoted as ψ∗. The following theorem establishes conditions ensuring that the SNCBF B(x)

obtained via (3.11) provides a valid solution to Problem 3.1.

Theorem 3.3. Consider a continuous time stochastic control system (3.1), and initial safe
and unsafe sets XI ⊆ XS ⊆ X and XU ⊆ X \ XS, respectively. Let B(x) be the SNCBF
with trainable parameters θ. Suppose condition 1) in Assumption 3.3 holds so that the
functions qk(x), k ∈ {1, 2, 3} in equation (3.10) are Lipschitz continuous. For the SOP (3.11)
constructed by utilizing x1, . . . , xN such that D is covered by balls centered at the xi’s with
radii ϵ̄, let ψ∗ be the optimal value. Then B(x) is a valid SNCBF, i.e., it solves Problem 3.1,
if the following condition holds:

Lmaxϵ̄+ ψ∗ ≤ 0, (3.12)

68

where Lmax is the maximum of the Lipschitz constants of qk(x), k ∈ {1, 2, 3} in (3.10).

Proof. For any x and any k ∈ {1, 2, 3}, we know that:

qk(x) = qk(x)− qk(xi) + qk(xi)

≤ Lk ∥x− xi∥+ ψ∗

≤ Lk ϵ̄+ ψ∗ ≤ Lmaxϵ̄+ ψ∗ ≤ 0.

Hence, if qk(x), k ∈ {1, 2, 3} satisfies condition (3.12), then the B(x) is a valid SCBF,
satisfying conditions (3.8).

Theorem 3.3 reformulates Problem 3.1 as follows. Given the data sets S,U and D, devise an
algorithm that synthesizes SNCBF B(x) such that it satisfies the conditions required in SOP
(3.11) and ψ∗ satisfies condition (3.12).

We next present the method to synthesize a smooth SNCBF. Let ei denote a one-hot vector,
e.g., [ei]i = 1 and [ei]j = 0 for j ̸= i. We define a diagonal weighting matrix as follows.

Ω :=

{
Ω ∈ Rn×n | Ω =

n∑
i=1

ωiieie
T
i , ωii ≥ 0

}
.

For an NN with one hidden layer, we have Ω ∈ Dnx . By [107, Section III], the NN is Lipschitz
continuous with coefficient L if there exists a nonnegative diagonal matrix Ω such that the
matrix M(θ,Ω) defined by

M(·) =

L
2I + 2σ′σ′WT

1 ΩW1 −(σ′ + σ′)WT
1 Ω 0

−(σ′ + σ′)ΩW1 2Ω −W2

0 −W2 I


is positive semidefinite.

Our scenario necessitates ensuring not only the Lipschitz boundedness of the SNCBF B(x),
but also of ∂B

∂x
and V ⊺ ∂2B

∂x2
V . Therefore, we must explore the relationship between the network

weights and the matrix M to guarantee the boundedness of the aforementioned terms. To
address this issue, we introduce the following theorem which presents a method to ensure the
L-Lipschitz continuity of the SNCBF B(x), its derivative, and the Hessian terms in (3.10).

69

Theorem 3.4. Suppose Assumption 3.3 holds for an SNCBF B(x). The certificate for
L-Lipschitz continuity of ∂B

∂x
which is the derivative of the NN is given by Mσ̂(θ̂,Ω) ⪰ 0, where

σ̂ = σ′ and θ̂ = (W1,Ŵ2), Ŵ2 is defined as:

Ŵ2 = WT
1 diag(W2). (3.13)

Additionally, the certificate for the L-Lipschitz continuity of tr(V T ∂2y
∂x2

V) is expressed as
Mσ̄(θ̄,Ω) ⪰ 0, where σ̄ = σ′′ and θ̄ = (W1,W̄2) and W̄2 is defined as:

W̄2 =
[∑r

j=0 V
2
j W

j1
2 W1j

1 . . .
∑r

j=0 V
2
j W

jn
2 Wpj

1

]
. (3.14)

Proof. Consider an NN with p neurons in a hidden layer. The dimension of the input (x) is
nx× 1, the dimension of pre-final weight (W1) is p×nx, the dimension of pre-final bias (r1) is
p× 1 and the dimension of final weight (W2) is 1× p. Let us start by differentiating the NN:

y = W2σ(W1x+ r1)

∂y

∂x
= W2diag(σ

′)W1

(Here, σ′ = σ′(W1x+ r1)).

The dimension of ∂y
∂x

is 1× nx, therefore, its transpose will have the dimension of nx × 1.

(
∂y

∂x
)T = (W2diag(σ

′)W1)
T

= ((σ′)Tdiag(W2)W1)
T

= WT
1 diag(W2)︸ ︷︷ ︸

θ̂l

σ′(W1x+ r1).

The term derivative term (∂y
∂x

) is equivalent to an NN with with activation σ̂ = σ′
l and weight

parameters θ̂ = (W1,Ŵ2) and Ŵ2 is defined as:

Ŵ2 = WT
1 diag(W2).

Therefore, the certificate for L-Lipschitz continuity of the derivative term (∂y
∂x

) is given by
Mσ̂(θ̂,Ω) ⪰ 0.

70

Now, let us calculate tr(V T ∂2y
∂x2

V), where V is nx × nx diagonal matrix.

∂y

∂x
= Ŵ2σ̂(W1x+ r1)

V T ∂
2y

∂x2
V = V T (Ŵ2diag(σ̂

′)W1)V

tr(V T ∂
2y

∂x2
V) = tr(V T (Ŵ2diag(σ̂

′)W1)V)

=
[∑r

j=0 V
2
j Ŵ

j1
2 W1j

1 . . .
∑r

j=0 V
2
j Ŵ

jp
2 Wpj

1

]
︸ ︷︷ ︸

W̄2

σ′′(W1x+ r1).

The term tr(V T ∂2y
∂x2

V) is equivalent to a feedforward NN with activation σ̄ = σ′′ and weight
parameters θ̄ = (W1,W̄2) and Ŵ2 is defined as:

W̄2 =
[∑nx

j=0 V
2
j Ŵ

j1
2 W1j

1 . . .
∑nx

j=0 V
2
j Ŵ

jp
2 Wpj

1

]
.

Therefore, the certificate for Lipschitz continuity of the tr(V T ∂2y
∂x2

V) term is given by
Mσ̄(θ̄,Ω) ⪰ 0.

Next, we define a suitable loss function to train the smooth SNCBF B(x) such that its
minimization yields a solution to Problem 3.1:

L(θ) = 1

N

∑
xi∈S

max (0, (−B(xi))1XI
− ψ) ,

+
1

N

∑
xi∈U

max (0, (B(xi) + δ)1XU
− ψ) ,

+
1

N

∑
xi∈D

max(0,−∂B
∂x

f(xi) +
∂B

∂x
g(xi)u+

1

2
tr

(
V ⊺∂

2B(xi)

∂x2
V

)
− α(B(xi))− ψ).

(3.15)

Let us consider a constrained optimization problem aiming to minimize loss L(θ) in (3.15)
subject to Mj(θ,Ω) ⪰ 0 for j = 1, 2, 3, to ensure the Lipschitz continuity of the SNCBF B(x),

71

as well as its derivative and Hessian terms. By employing a log-determinant barrier function,
we convert this into an unconstrained optimization problem:

min
θ,Ω
L (fθ) + LM(θ,Ω),

where LM(θ,Ω) = −
∑q

j=0 ρj log det (Mj(θ,Ω)) and ρj > 0 are barrier parameters. Ensuring
that the loss function LM (θ,Ω) ≤ 0, guarantees that the linear matrix inequalities Mj(θ,Ω) ⪰
0, j = 1, 2, 3 hold true. Let us consider the loss functions characterizing the satisfaction of
Lipschitz bound as

LM(θ,Ω, Ω̂, Ω̄) = −cl1 log det(M1(θ,Ω))

− cl2 log det(M2(θ̂, Ω̂))− cl3 log det(M3(θ̄, Ω̄)),
(3.16)

where cl1 , cl2 , cl3 are positive weight coefficients for the sub-loss functions, M1,M2,M3 are
the semi-definite matrices corresponding to the Lipschitz bounds Lh, Ldh, Ld2h respectively,
Ω, Ω̂, Ω̄ are trainable parameters and θ, θ̂, θ̄ are the weights mentioned in Theorem 3.4.

Finally, let us consider the following loss function to satisfy validity condition (3.12):

Lv(ψ) = max (0, Lmaxϵ̄+ ψ) , (3.17)

where Lmax is maximum of the Lipschitz constants of qk(x), k ∈ {1, 2, 3} in (3.10), or
Lmax = max (Lh, Lh + LdhLx + Ld2h) and ϵ̄ is our sampling density.

The training procedure begins by fixing all hyperparameters, including ϵ̄, Lh, Ldh, Ld2h, ω1,
ω2, cl1 , cl2 , cl3 , and the maximum number of epochs. The overall algorithm is summarized in
Algorithm 5.

3.2.2 Smooth SNCBF Verification and Synthesis

The previous approach is limited to single hidden layer NNs and requires dense sampling
under Assumption 3.3. In this subsection, we consider an NN with multiple hidden layers
and relax assumptions on Lipschitz continuity and diagonal V . To ensure the conditions in
(3.8) hold, we propose a novel verification to validate a smooth SNCBF. We then leverage

72

Algorithm 5 Training Formally Verified SNCBF
Require: Data Sets: S,U ,D, Dynamics: f, g, σ, Lipschitz Bounds: Lh, Ldh, Lx, Ld2h

Initialize(θ, ψ,Ω,Ω′,Ω′′)
xi ← sample(S,U ,D)
Lmax ← Lh, Ldh, Lx, Ld2h
while Lθ > 0 or LM ̸≤ 0 or Lv > 0 do

B ← θ
ui ← SNCBF_QP(B, f, g, σ, xi, ψ) ▷ From eq. (3.4)
Lθ ← (B, f, g, σ, xi, ui, ψ) ▷ From eq. (3.15)
θ ← Learn(Lθ, θ)
LM ← (θ,Ω,Ω′,Ω′′) ▷ From eq. (3.16)
θ,Ω,Ω′,Ω′′ ← Learn(LM)
Lv ← (Lmax, ψ) ▷ From eq. (3.17)
ψ ← Learn(Lv)

end while

the Verification-In-The-Loop (VITL) synthesis proposed in [16], propose SMT-based verifiers
for smooth SNCBFs, and construct the loss function for the VITL synthesis.

The safety guarantee of our smooth SNCBF relies on both the correctness of the super-0-level
set, i.e., D ⊆ XS and the existence of the control signal u satisfying the SNCBF condition,
given as follows.

Definition 3.3 (Valid Smooth SNCBFs). The function B(x) is called a valid smooth SNCBF
if B(x) satisfies the Correctness requirement of SNCBFs, i.e. ∀x ∈ D, and the Feasibility
requirement of SNCBFs i.e. x ∈ XS, and there exists a stochastic smooth NCBF control u
satisfying the conditions of Proposition 3.1.

These correctness and feasibility conditions must hold for every state in the super-0-level-set
x ∈ D. States are referred to as correctness or feasibility counterexamples if they violate
the corresponding condition. Since existing VITL cannot ensure the elimination of all
counterexamples [34, 39], it is essential to verify SNCBF.

As shown in Fig. 3.1, our proposed training framework consists of three components: a
training dataset T , a synthesis module, and a verification module. These elements form
two loops. The inner loop learns a parameter θ for the synthesized B(x) that satisfies the
conditions of Definition 3.3 by minimizing a loss function over training data T . The training
dataset T is initialized through uniform sampling of X . This loss function consists of a

73

Synthesis

Training
Dataset 𝒯

∀𝒙$ ∈ 𝒯 Verification

𝐹𝑎𝑙𝑠𝑒, 𝒙$!"

𝑇𝑟𝑢𝑒

𝐵(𝒙)

Figure 3.1: Workflow of the synthesis with verification in the loop.

weighted sum of two components, structured as an unconstrained optimization problem to
seek out θ.

min
θ

λfLf (T) + λcLc(T) (3.18)

where λf and λc are non-negative coefficients. The term Lf(T) is the loss penalizing the
violations of constraint (3.22a)-(3.22c) (feasibility condition of Definition 3.3), and the term
Lc(T) penalizes the correctness counterexample with negative minima of (3.20) (correctness
condition of Definition 3.3). For each sample x̂ ∈ T the safe control signal u(x) is calculated
by SNCBF-QP. The loss Lf enforces the satisfaction of the constraint by inserting a positive
relaxation term r in the constraint and minimizing r with a large penalization in the objective
function. We have the loss Lf defined as Lf = ||u(x)− uref(x)||2 + r. The loss term Lc is
defined as

Lc =
1

N

∑
x̂i∈XI

max (0, (ϵ−B(x̂i))1Xs) +
1

N

∑
x̂j∈XU

max (0, (B(x̂j) + ϵ)1XU
) (3.19)

The outer loop validates a given SNCBF B(x) by searching for counterexamples x̂ce and
updates the training dataset as T ∪ {x̂ce}. The intuition behind the framework is to penalize
violations for all x̂ ∈ T and generalize it from T to X through the verification module.
Utilizing this framework results in the verification of the synthesized SNCBF while also
generating counterexamples to augment the training dataset.

In what follows, we present the verification of the smooth SNCBF. We first verify the
correctness condition in Definition 3.3. What we want to show is that the super-0-level set of

74

the SNCBF is contained by the safe region D ⊆ XS. The correctness counterexample refers
to states x ∈ D ⊆ XS with h(x) < 0. Specifically, we check if D ∩XU = ∅. It suffices to solve
the nonlinear program

minx h(x)

s.t. B(x) ≥ 0.
(3.20)

If there exists x∗ such that h(x∗) < 0 while B(x∗) = 0, then x∗ is a correctness counterexample.

Next, we verify the feasibility condition in Definition 3.3. Let λ(xt) and ξ(xt) be as follows.

λ(xt) :=
∂B

∂xt
g(xt)

ξ(xt) :=
∂B

∂xt
f(xt) +

1

2
tr

(
V T ∂

2B

∂x2t
V

)
− α(B(xt)).

Rearranging the terms in (3.8), we have the affine constraints given as

λ(xt)ut ≤ ξ(xt), (3.21)

The feasibility counterexample refers to the state x such that there does not exist a u satisfying
condition (3.21).

We next consider the case with control input constraints u ∈ U := {u : Au ≤ b}. We present
Λ(xt), Ξ(xt) and corresponding verification formulation.

Proposition 3.2. Let Λ(xt) and Ξ(xt) be as follows.

Λ(xt) :=

[
−λ(xt)
A

]
; Ξ(xt) :=

[
ξ(xt)

b

]

There always exists a u satisfying (3.21) if and only if there is no x ∈ D and y ∈ Rnu+1 such
that

[y]i ≥0, ∀i ∈ {1, . . . , nu + 1} (3.22a)

−yTΞ(x) <0 (3.22b)[
yTΛ(x)

]
i
=0, ∀i ∈ {1, . . . , nu + 1} (3.22c)

75

Proof. The proof is to show that there does not exist x such that, for any u ∈ U , (3.21) fails
to hold. By Farkas’s Lemma, the existence of control input u satisfying (3.21) is equivalent
to the non-existence of y satisfying (3.22a)–(3.22c), completing the proof.

The NN is a polynomial if all the activation functions are polynomials, e.g., Hermite Polynomial
Activation Functions [108]. The following lemma shows that given a polynomial SNCBF, the
non-existence of x and y can be proved through Positivstellensatz.

Lemma 3.1. There is no feasibility counterexample x ∈ D if and only if there exist polynomials
ρy1 (x) . . . ρ

y
nu+1(x), sum-of-squares polynomials qP (x), integers τ = nu + 3, r1 such that

ϕ(x,y) + χ(x,y) + Γ(x,y) = 0, (3.23)

and

ϕ(x,y) =
∑

K⊆{1,...,τ}

pi(x)
∏
i∈K

ϕi(x,y)

χ(x,y) = ϕ1(x,y)
2r1

Γ(x,y) =
nu∑
i=1

ρyi
[
yTΛ(x)

]
i
,

where ϕ1(x) = −yTΞ(x), ϕ2(x) = B(x), and ϕ3,...,nu+3(x,y) = yi.

Proof. By Proposition 3.2, we have that there is no feasibility counterexample iff there exists
no x ∈ D and y such that (3.22a)–(3.22c) hold. The condition yTΞ(x) < 0 is equivalent to
−yTΞ(x) ≥ 0 and yTΞ(x) ̸= 0. The result then follows from the Positivstellensatz

If the SNCBF has non-polynomial activation functions, the conditions of Proposition 3.2 can
be verified by solving the nonlinear program

minx,y yTΞ(x)

s.t. B(x) ≥ 0

[y]i ≥ 0, ∀i ∈ {1, . . . , nu + 1}[
yTΛ(x)

]
i
= 0, ∀i ∈ {1, . . . , nu + 1}

(3.24)

and checking whether the optimal value is nonnegative (safe) or negative (unsafe).

76

The following corollary describes the special case where there are no constraints on the
control, i.e., U = Rnu .

Corollary 3.1. There exists u ∈ Rnu satisfying

−λ(xt)u ≤ ξ(xt)

for all x ∈ D if and only if there is no x such that λ(x) = 0, and ξ(x) > 0.

Proof. When the vector ∂B
∂x
g(x) ̸= 0, there is always u ∈ Rnu that satisfies (3.21). When the

vector ∂B
∂x
g(x) = 0, u does not affect the inequality, which is equivalent to having u = 0. In

this case, Ξ(xt) > 0 ensures (3.21) hold.

Under the condition of Corollary 3.1, the nonlinear program (3.24) reduces to

minx ξ(x)

s.t. B(x) ≥ 0

[λ(x)]i = 0, ∀i ∈ {1, . . . , nu}
(3.25)

The condition of Corollary 3.1 can be verified by checking whether the optimal value is
nonnegative (safe) or negative (unsafe). Nonlinear programs (3.20), (3.24), and (3.25) can be
solved by SMT solvers with numerical completeness guarantees.

3.3 Rectified Linear Unit Stochastic Control Barrier Func-

tions

In this section, we investigate the SNCBF with non-smooth activation functions, specifically,
the Rectified Linear Unit (ReLU) function ReLU(x) = max{x, 0}. ReLU, one of the most
popular activation functions, is not differentiable at point 0. This makes the approach of
the previous section, where we assumed the activation functions were twice-differentiable
everywhere, not directly applicable. To address this issue, we utilize Tanaka’s formula, derive
the safety condition, and propose efficient verification algorithms for VITL frameworks.

Problem 3.2. Given a continuous-time stochastic control system defined as (3.1), a desired
confidence level η, state space X , initial safe and unsafe sets Xs and XU , respectively,

77

devise an algorithm that synthesizes a stochastic neural CBF (SNCBF) Bθ(x) with ReLU
activation functions. In particular, the SNCBF must satisfy the following worst-case probability
guarantee:

P [xt ∈ int(D), 0 ≤ t ≤ T | x0 ∈ int(D)] ≥ 1− η.

Our approach to this problem mirrors our approach for the smooth case: (i) deriving the
safety condition of ReLU SNCBFs, (ii) verification of ReLU SNCBFs, and (iii) synthesis with
verification in the loop.

3.3.1 Single-Hidden-Layer ReLU Stochastic NCBF

Since the ReLU neural network is not differentiable everywhere, the approach of the previous
section is not directly applicable. Tanaka’s formula provides a general form for creating
NCBFs for stochastic systems with non-smooth activation functions by explicitly linking
the local time of a semimartingale process to its behavior. Let B : Rn → R be a single-
layer feedforward NN with ReLU activation function. Define z1jt = W T

1jxt + r1j and let
S(t) = {j : W T

1jxt + r1j > 0}, i.e., the set of neurons whose pre-activation inputs are positive
at time t.

By Tanaka’s formula, we have the random process B(xt) satisfies

B(xt) =
M∑
j=1

[W2j({z1j0}+ +

∫ t

0

1(z1js > 0)dz1js)]

+
1

2

M∑
j=1

W2j(|z1jt| − |z1j0| −
∫ t

0

sgn(z1js)dz1js) + r2. (3.26)

Let D := {x : B(x) ≥ 0}. We next derive a stochastic process that lower bounds B(xt).

78

Lemma 3.2. Suppose that there exists a scalar Rj such that |zj| ≤ Rj for all j ∈ {1, . . . ,M}
whenever B(xt) ≥ 0. Let B̃(xt) be defined as follows.

B̃(xt) :=
M∑
j=1

[W2j({z1j0}+ +

∫ t

0

1(z1js > 0) dz1js)]

+
1

2

M∑
j=1

W2j(−|z1j0| −
∫ t

0

sgn(z1js) dz1js)−
1

2

M∑
j=1

|W2j|
Rj

z21jt + r2 (3.27)

Then we have B̃(xt) ≤ B(xt) for all xt ∈ D.

Proof. Given that there exists a scalar Rj such that |z1jt| ≤ Rj for all j ∈ {1, . . . ,M}
whenever B(xt) ≥ 0, we have |z1jt| ≥ 1

Rj
|z1jt|2 for all t when B(xt) ≥ 0. When W2j < 0 and

W2j ≥ 0, we have
∑M

j=1W2j|z1jt| ≥ −
∑M

j=1
|W2j |
Rj

z21jt. Hence, we have B̃(xt) ≤ B(xt) for all
xt ∈ D.

For simplicity, we let ζ(xs) = 2xTsW1jW
T
1j + 2r1jW

T
1j. The expected instantaneous rate of

change of B̃t := B̃(xt) is described by the Infinitesimal Generator AB̃t defined as follows.

Lemma 3.3. The infinitesimal generator of B̃t is

AB̃t = βD(xt, ut) (3.28)

where

βD(·) =
1

2

M∑
j=1

W2j

(
1(z1js > 0)− 1

2
sgn(z1js)

)
·W T

1j(f(xs) + g(xs)us)

−1

2

M∑
j=1

|W2j|
Rj

[
ζ(xs)(f(xs) + g(xs)us)

+
1

2
tr(V T

s W1jW
T
1jVs)

]
.

79

Proof. Consider B̃(xt) defined by

B̃(xt) = B̃0 −
1

2

M∑
j=1

|W2j|
Rj

z21jt +
M∑
j=1

W2j

∫ t

0

(1(z1js > 0)− 1

2
sgn(z1js))dz1js,

where B̃0 =
∑M

j=1 (W2j({z1j0}+ − 1
2
|z1j0|) + r2. By Ito’s lemma [109], we have

dz1jt = W T
1jdxt = W T

1j(f(xt) + g(xt)utdt+W T
1jVtdvt.

z21jt = z21j0 +

∫ t

0

[
ζ(xs)(f(xs) + g(xs)us) +

1

2
tr(V T

s W1jW
T
1jVs)

]
ds+

∫ t

0

ζ(xs)Vs dvs.

Substituting into the formula for B̃(xt) gives

B̃(xt) = B̃0 +
M∑
j=1

W2j

[∫ t

0

(
1(z1js > 0)− 1

2
sgn(z1js)

)
·W T

1j(f(xs) + g(xs)us) ds

+

∫ t

0

(1(z1js > 0)− 1

2
sgn(z1js))W T

1jVs dvs

]
−1

2

M∑
j=1

|W2j|
Rj

[∫ t

0

(ζ(xs)(f(xs) + g(xs)us)

+
1

2
tr(V T

s W1jW
T
1jVs))ds +

∫ t

0

ζ(xs)Vs dvs

]
.

This gives the drift term

βD(xs, us) =
M∑
j=1

W2j

(
1(z1js > 0)− 1

2
sgn(z1js)

)
·W T

1j(f(xs) + g(xs)us)

−1

2

M∑
j=1

|W2j|
Rj

[
ζ(xs)(f(xs) + g(xs)us)

+
1

2
tr(V T

s W1jW
T
1jVs)

]
.

80

By (3.26) and (3.27), we have

B̃(xt) = B(xt)−
1

2

M∑
j=1

W2j|z1jt| −
1

2

M∑
j=1

|W2j|
Rj

z21jt.

We next define the safe control constraint based on B̃(xt) as follows.

Definition 3.4. A control signal set Uz := {ut : t ∈ [0, T]} is a ReLU SNCBF control if there
exists k > 0 and Rj > 0 for j ∈ {1, . . . ,M}, such that the following conditions are satisfied
at each time t:

AB̃(xt) ≥ −kB̃(xt). (3.29)

Let D̃ := {x : B̃(x) ≥ 0}. The following result shows the worst-case probability guarantee
when applying stochastic ReLU NCBF control.

Theorem 3.5. Suppose Assumption 3.1 holds and Assumption 3.2 holds for B̃(x), i.e., B̃(x)

is in the domain of the operator D(A). Further suppose there exists a scalar Rj such that
|zj| ≤ Rj for all j ∈ {1, . . . ,M} whenever B(x) ≥ 0. Let Uz be a ReLU SNCBF control set
in Definition 3.4, x0 ∈ D̃ ∩ D and c = supx∈D̃ B̃(x). By choosing ut ∈ Uz for all time t, we
have the following worst-case probability estimation:

P [xt ∈ int(D), t ∈ [0, T]] ≥

(
B̃(x0)

c

)
e−cT .

Proof. Given x0 ∈ D̃∩D and u ∈ Uz, by Proposition 3.1, we have xt ∈ int(D̃) with probability

P
[
xt ∈ int(D̃), t ∈ [0, T]

]
≥

(
B̃(x0)

c

)
e−cT .

By Lemma 3.2, we have B̃(xt) ≤ B(xt) for all xt ∈ D.

P [xt ∈ int(D), t ∈ [0, T]] ≥ P
[
xt ∈ int(D̃), t ∈ [0, T]

]
Since D ⊆ XS, we have

P [xt ∈ int(D), t ∈ [0, T]] ≥ P [xt ∈ int(D), t ∈ [0, T]] .

81

3.3.2 ReLU SNCBF Verification and Synthesis

The safety guarantee derived in Section 3.3.1 is dependent on if the given ReLU-SNCBF B̃ is
a valid ReLU-SNCBF. In what follows, we first present the conditions of a valid ReLU-SNCBF
and then present the verification approach.

Definition 3.5 (Valid ReLU SNCBFs). The function B(x) is a valid ReLU SNCBF if ∀x ∈ D
(Correctness) x ∈ XS and (Feasibility) there exists control u satisfying the ReLU SNCBF
B̃(x) conditions (3.29).

The correctness and feasibility verification rely on iterating all S ∈ Q, where Q is the set of
all activated sets in our NN. Next, we present the enumeration of activated sets S.

Enumeration

Let S(x) denote the activated set S determined by x. Let △ denote the symmetric difference
between two sets. The activation flip j-th neuron is denoted as S△{j}, e.g. if j ∈ S, then j
is excluded by operation △ from the set S. Given a state x0, the following linear program
checks the existence of a state x such that B(x) ≥ 0.

SuperLP(S(x0)) =


find x

s.t. W ({S(x0)})Tx+ r({S(x0)}) ≥ 0

x ∈ X (S(x0)).

The Feasibility of SuperLP means the hyperplane X (S(x0)) contains the super-0-level-set of
B(x).

The enumeration process conducts its search in a breadth-first manner to determine if a
neighboring hyperplane, with a flip in its j-th neuron, contains x such that B(x) ≥ 0.
Enumeration solves a linear program, referred to as the unstable neuron linear program of
USLP(S, j). This linear program checks the existence of a state x ∈ X (S)∩{x : Wijx+rij = 0}

82

that satisfies W (S)x+ r(S) ≥ 0. The unstable neuron linear program is defined as follows.

USLP(S, j) =



find x

s.t. W ({S})Tx+ r({S}) ≥ 0

Wij({S})Tx+ rij({S}) = 0

x ∈ X (S).

The enumeration process described above is summarized in Algorithm 6.

Algorithm 6 Enumerate Activated Sets
1: Input: x0 ∈ int(D) and S0 = S(§′)
2: Output: Set of activation sets Q
3: procedure Enumeration(S0)
4: Initialize queue Q with initial activation set S0
5: Initialize sets S with S0
6: while queue Q is not empty do
7: Dequeue S from Q ▷ Pop the first activated set
8: if SuperLP(S) is feasible then
9: if S /∈ Q then ▷ If S is not already in Q

10: Q← Q ∪ S
11: end if
12: for j ∈ {1, . . . ,M} do
13: if USLP(S, j) then ▷ Check neighbors
14: S ′ ← S△{j}
15: Q ← Q∪ S ′ ▷ Add to the queue
16: end if
17: end for
18: end if
19: end while
20: Return Q
21: end procedure

Proposition 3.3. Let Q denote the output of Algorithm 6. Then the super-0-level set D
satisfies D ⊆

⋃
S∈QX ({S}).

Proof. Suppose there exists x′ ∈ D \
(⋃

S∈QX ({S})
)
. Since D is connected, there exists

a path γ such that x′ ∈ γ. Let S0,S1, . . . ,SK denote a sequence of activated sets where
γ ⊆

⋃K
i=0X ({Si}). Given the finite neurons in the ReLU SNCBF, the breadth-first search in

83

the activated set is complete [110]. By the completeness, we have for any T′ ⊆ T(S0, . . . ,SK),(⋂K
l=0X ({Sl})

)
∪T′ ⊆ {X ({S1}), . . . ,X ({Sr})}. Since x′ ∈ D \

(⋃
S∈QX ({S})

)
, we have

x′ = γ(t′) and x∗ = γ(t) for some t ∈ [0, t′] such that x∗ ∈ T′. Then, we have the hinge
T′ ⊈ T(S0, . . . ,SK), and T′ ⊈ {X ({S1}), . . . ,X ({Sr})}, thus creating a contradiction.

With all activated sets included in Q, we next verify each S ∈ Q.

Correctness Verification

We first verify the correctness condition in Definition 3.5. We denote the state x ∈ D ⊆ Xs
with h(x) < 0 as a correctness counterexample. Let Q : {S : X ({S}) ∩ D ̸= ∅}. We need to
show that there does not exist any correctness counterexamples for all hyperplanes X ({S})
for all S ∈ Q such that XU ∩ X ({S}) = ∅. It suffices to solve the nonlinear program

minx h(x)

s.t. W 1j({S})Tx+ r1j({S}) ≥ 0 ∀j ∈ S
W 1j({S})Tx+ r1j({S}) ≤ 0 ∀j /∈ S
W ({S})Tx+ r({S}) ≥ 0.

(3.30)

If the optimal value is negative, we return the verification result False and we collect the
solution x∗ as a counterexample, denoted as x̂ce. Otherwise, we return the verification result
True and an empty counterexample placeholder, i.e., Null.

Feasibility Verification

Next, we verify the feasibility condition in Definition 3.5. The function B̃ is a continuous
piece-wise linear function characterized by the activation set S(t). Let z̃(z1js) := 1(z1js >

84

0)− 1
2
sgn(z1js) We define λS(xt) and ξS(xt) as follows, when S(t) = S.

λS(xt) :=
1

2

M∑
j=1

(
W2j z̃(z1js)W

T
1j −

|W2j|
Rj

ζ(xt)

)
g(xt)

ξS(xt) :=
1

2

M∑
j=1

(
W2j z̃(z1js)W

T
1j −

|W2j|
Rj

ζ(xt)

)
f(xt)

− 1

2

|W2j|
Rj

tr(V T
s W1jW

T
1jVs).

We consider the case with control input constraints u ∈ U := {u : Au ≤ b}. Let Q : {S :

X ({S}) ∩ D ̸= ∅}. The following proposition presents the feasibility condition for a ReLU
SNCBF.

Proposition 3.4. Let ΛS(xt) and ΞS(xt) be as follows.

ΛS(xt) :=

[
−λS(xt)

A

]
ΞS(xt) :=

[
ξS(xt)

b

]
.

For all x ∈ D̃, there always exists a u satisfying (3.21) if and only if, for all S ∈ Q, there is
no x ∈ D̃ ∩ X ({S}) and y ∈ Rnu+1 such that

[y]1 ≥0, ∀i ∈ {1, . . . , nu + 1} (3.31a)

−yTΞS(x) <0 (3.31b)[
yTΛS(x)

]
1
=0, ∀i ∈ {1, . . . , nu + 1}. (3.31c)

The proof is similar to Proposition 3.2.

85

In a similar fashion to the correctness conditions, the feasibility condition (3.31) can be
verified by solving the nonlinear program

minx,y yT

(
ξS(x)

b

)

s.t. yT

(
−λS(x)
A

)
= 0

y ≥ 0

B̃(x) ≥ 0

W 1j({S})Tx+ r1j({S}) ≥ 0 ∀j ∈ S
W 1j({S})Tx+ r1j({S}) < 0 ∀j /∈ S

(3.32)

and checking whether the optimal value is nonnegative (safe) or negative (unsafe). If the
optimal value is nonnegative, we have the verification result True. Otherwise, we have the
verification result False and we collect the solution x∗ as a counterexample, denoted as x̂ce.

To enhance efficiency, we present sufficient conditions for verification. Since the ReLU SNCBF
is smooth in each hyperplane X (S), we use the sufficient conditions derived in Section 3.2.2.
Under the condition of Corollary 3.1, the nonlinear program (3.32) reduces to

minx ξS(x)

s.t. B̃(x) ≥ 0

x ∈ X ({S})[
λS(x)

]
i
= 0, ∀i ∈ {1, . . . , nu}.

(3.33)

The system with u = 0 is feasible in hyperplane X ({S}) if xiS(x) ≥ 0. It suffices to verify
feasibility by solving the following nonlinear program.

minx ξS(x)

s.t. B̃(x) ≥ 0

x ∈ X ({S}).
(3.34)

The ReLU SNCBF verification is summarized in Algorithm. 7. Given an input x0 ∈ D, the
verification determines if the given ReLU SNCBF B is valid by checking if the conditions in
Definition 3.5 are satisfied. If so, the verification returns result True, otherwise, it outputs

86

False and the counterexamples x̂ce where the verification fails. The verification checks if B
suffices to satisfy (3.32) by sequentially examining the sufficient conditions (3.34) and (3.33)
for better efficiency.

Algorithm 7 ReLU SNCBF Verification
1: Input: x0 ∈ D
2: Output: Boolean result res, Counterexample x̂ce
3: procedure Verification(S(x0))
4: S ← Enumeration(S0) ▷ Algorithm. 6
5: for S ∈ Q do
6: res, x̂ce ← Solve (3.30) ▷ Correctness Verification
7: res, x̂ce ← Solve (3.34) ▷ Feasibility Verification
8: if ¬res then
9: res, x̂ce ← Solve (3.33)

10: if ¬res then
11: res, x̂ce ← Solve (3.32) ▷ Exact Condition
12: end if
13: end if
14: end for
15: Return res, x̂ce
16: end procedure

Synthesis with Verification

The synthesis with verification of ReLU SNCBF shares the same loss function structure (??)
as the smooth case. For each sample x̂ ∈ T the safe control signal u is calculated using
(3.29). The correctness loss Lc(T) penalizes the counterexample with negative minima of
(3.30) (correctness condition of Definition 3.3) defined as

Lc =
1

N

∑
x̂i∈Xs

max
(
0,
(
ϵ− B̃(x̂i)

)
1Xs

)
+

1

N

∑
x̂j∈XU

max
(
0,
(
B̃(x̂j) + ϵ

)
1XU

)
. (3.35)

The loss Lf enforces the satisfaction of the feasibility constraint by inserting a positive
relaxation term r in the constraint and minimizing r with a large penalization in the
objective function, penalizing the violations of constraint (3.31a)-(3.31c) (feasibility condition
of Definition 3.5), defined as Lf = ||u(x̂)− uref (x̂)||2 + r.

87

3.4 Experiments

In this section, we evaluate our proposed methods experimentally on 3 different systems.
We first present the experiment settings, including hardware details and dynamical models
for each experiment case. We evaluate the verifiable synthesis of a smooth SNCBF on the
inverted pendulum and the unicycle model. We validate VITL synthesis of ReLU SNCBF on
the Darboux model and the unicycle model. Finally, we compare smooth and ReLU SNCBF
on the unicycle model against a baseline method.

3.4.1 Experiment Settings

The learning experiments of the SNCBFs are conducted on a computing platform equipped
with an AMD Ryzen Threadripper PRO 5955WX CPU, 128GB RAM, and two NVIDIA
GeForce RTX 4090 GPUs. We present the dynamic models and detailed settings of three
cases, namely, the inverted pendulum, the Darboux system, and the unicycle model.

Inverted Pendulum

We consider a continuous time stochastic inverted pendulum dynamics given as follows:

d

[
θ

θ̇

]
=

([
θ̇

g
l
sin(θ)

]
+

[
0
1
ml2

]
u

)
dt+ V dvt, (3.36)

where θ ∈ R denotes the angle, θ̇ ∈ R denotes the angular velocity, u ∈ R denotes the
controller, m denotes the mass and l denotes the length of the pendulum. We let the mass
m = 1kg, length l = 10m and the disturbance σ = diag(0.1, 0.1). The inverted pendulum
operates in a state space and is required to stay in a limited safe stable region. The state

88

space, initial safe region and the unsafe region are given as follows.

X =

{
x ∈ R2 : x ∈

[
−π
4
,
π

4

]2}
XI =

{
x ∈ R2 : x ∈

[
− π

15
,
π

15

]2}
XS =

{
x ∈ R2 : x ∈

[
−π
6
,
π

6

]2}
XU =

{
x ∈ R2 : x ∈ X\XS

}
.

Darboux

We consider the Darboux system [96], a nonlinear open-loop polynomial system

The dynamic model of Darboux is given as follows.

d

[
x1

x2

]
=

[
x2 + 2x1x2

−x1 + 2x21 − x22

]
+ V dvt. (3.37)

We define state space, initial region, and safe region as follows.

X =
{
x ∈ R2 : x ∈ [−2, 2]2

}
XI =

{
x ∈ R2 : x ∈ [0, 1]× [1, 2]

}
XS =

{
x ∈ R2 : x1 + x22 ≥ 0

}
XU =

{
x ∈ R2 : x ∈ X\XS

}
Unicycle Model

We evaluate our proposed method on a controlled system [97]. We consider vehicles (UAVs)
to avoid a pedestrian on the road. The system state consists of a 2-D position and aircraft
yaw rate x := [x1, x2, ψ]

T . The system is manipulated by the yaw rate input u.

d

 x1

x2

ψ

 =


 v cosψ

v sinψ

0

+

 0

0

1

u
 dt+ V dvt, (3.38)

89

where [xp, yp,Θ]T ∈ X ⊆ R3 is the state consisting of the location (xp, yp) of the robot and
its orientation Θ and u1, u2 controlling its speed and orientation.

We define the state space, initial region, safe region, and unsafe region as follows.

X =
{
x ∈ R3 : x ∈ [−2, 2]3

}
XI =

{
x ∈ R3 : x ∈ [−0.1, 0.1]× [−2,−1.8]×

[
−π
6
,
π

6

]}
XS =

{
x ∈ R3 : X \ XU

}
XU =

{
x ∈ R2 : x ∈ [−0.2, 0.2]2 × [−2, 2]

}
.

3.4.2 Experiment Results

We now present the results of our SNCBF experiments for both the Smooth and ReLU cases.
For each experiment, we present the hyper-parameters, settings, and experiment results.
Finally, we compare our SNCBFs with a state-of-the-art approach as a baseline.

Smooth SNCBF Evaluation

For the class K function in the CBF inequality, we chose α(B) = γB, where γ = 1. We train
the SNCBF assuming knowledge of the model. The SNCBF B consists of one hidden layer of
20 neurons, with Softplus activation function (log(1 + exp(x)).

Inverted Pendulum: For the case of the inverted pendulum system, we set the training
hyper-parameters to ϵ̄ = 0.00016, Lh = 0.01, Ldh = 0.4 and Ld2h = 2 yielding Lmax = 2.4.
We performed the training and simultaneously minimized the loss functions Lθ,LM , and Lv.
The training algorithm converged to obtain the SNCBF B(x) with ψ∗ = −0.00042. Thus,
using Theorem 3.3, we can verify that the SNCBF obtained is valid, which ensures safety.

Visualizations of the trained SNCBF are presented in both 2D with sample points (Fig.
3.2a) and in 3D function value heat map (Fig. 3.2b). These visualizations demonstrate the
successful separation of the initial safety region boundary from the unsafe region boundary.
We validate our SNCBF-QP based safe controller on an inverted pendulum model with

90

PyBullet. Fig 3.2c shows trajectories initiated inside the safe set (with different reference
controllers) never leaving the safe set, thus validating our approach.

(a) (b) (c)

Figure 3.2: This figure presents the experimental results on the inverted pendulum system.
Fig. 3.2a visualizes of B(x) over X . Blue and red regions denote the safe region (B ≥ −ψ∗)
and the unsafe region (B < ψ∗), respectively. The initial safety region boundary and unsafe
region boundary is denoted by black boxes. We observe that the boundary of trained SNCBF
(black dots) successfully separate the unsafe and safe region. Fig. 3.2b shows the 3D plot of
B(x) over X . Fig. 3.2c presents trajectories initiating inside the safe set following SNCBF-QP,
following different reference controllers

Unicycle Model: We then validate our smooth SNCBF-based safe control in the CARLA
simulation environment. The vehicle is modeled as the unicycle model and its controller steers
to avoid the pedestrian. If the control policy guides the vehicle to another lane in which there
are no incoming obstacles, it then switches to an autonomous driving algorithm. The training
hyper-parameters are set to ϵ̄ = 0.01, Lh = 1, Ldh = 1 and Ld2h = 2 resulting in Lmax = 4.
We performed the training which simultaneously minimized the loss functions Lθ,LM , and
Lv. The training algorithm converged to obtain the SNCBF B(x) with ψ∗ = −0.04002.

The trajectory of the vehicle is shown in Fig. 3.3. We show the trajectories of the proposed
SNCBF-based safe control in different reaction distances, namely, 6, 8, and 12 meters,
respectively. All three trajectories of the vehicle under control show that our proposed
method succeeds in maneuvering the vehicle to avoid the pedestrian.

ReLU SNCBF Evaluation

We next evaluate the verification-in-the-loop synthesis of ReLU SNCBF.

91

8m reaction
12m reaction
Unsafe Region

6m reaction

Figure 3.3: Proposed safe control comparison among different reaction distance. We let
the vehicle to adjust its orientation to maneuver in its lane. We show three trajectories to
demonstrate our proposed SNCBF-based controller under different initial state, namely, 6,
8 and 12 meter away from the pedestrian, respectively. Three trajectories of the vehicle
under control shows our proposed method succeeds in maneuvering the vehicle to avoid the
pedestrian.

Darboux: We set λf = 4.0, λc = 1.0 and learning rate lr = 10−4. In the Darboux case, the
neural network architecture utilized was a three-layer network consisting of 16 neurons in
the hidden layer with ReLU activation functions, followed by a single output neuron. The
training passed the verification at 86 epochs, achieving coverage of 54.4% of the safe region.
The verification process was completed in 0.6 seconds. The training of the ReLU SNCBF
required approximately 5.0 minutes.

Unicycle Model: We set λf = 2.0, λc = 1.0 and learning rate lr = 0.5 × 10−4. In
the unicycle model case, the complexity of the neural network architecture increased to a
three-layer configuration, incorporating 16 hidden neurons with ReLU, again followed by
a single output neuron. Training this network required 95 epochs to pass the verificaiton.
Verification for the unicycle model took slightly longer, completing in 3.1 seconds with a safe
region coverage of 41.2%. The corresponding synthesis time was approximately 10.5 minutes.

Case Darboux unicycle model

NN Architecture 2-16-σ-1 3-16-σ-1
Num Epoch 86 95

Safe Region Coverage 54.4% 41.2%
Verification Time 0.6 seconds 3.1 seconds
Synthesis Time 5.0 minutes 10.5 minutes

Table 3.1: ReLU SNCBF Synthesis Comparison

92

Table 3.1 summarizes the performance of the proposed ReLU SNCBF approach in verification
and synthesis tasks across two distinct scenarios: the Darboux and the unicycle model.

SNCBF Comparison

Baseline
FT-SNCBF

Verifiable
Smooth SNCBF

ReLU
SNCBF

Verifiability No Yes Yes
Coverage 14.8% 72.5% 45.7%

Training Time 39.4 minutes 64.2 minutes 17.6 minutes

Table 3.2: Comparison of Baseline, Smooth and ReLU SNCBF Synthesis. The smooth
SNCBF is the proposed verifiable synthesis in Algorithm 5. The ReLU SNCBF is synthesized
by VITL with the efficient verifier proposed in Algorithm 7.

Figure 3.4: Comparison of coverage and training time across Baseline, Smooth and ReLU
SNCBF Synthesis. Error bars indicate standard deviations across 5 seeds.

We compare our proposed method with an SNCBF trained with the baseline proposed in
[111]. We proceed with 5 different random seeds for each synthesis method. We compare
in three aspects, verifiably safety, coverage of the safe region and the training time. The
comparison results are summarized in Table 3.2 and Figure 3.4.

93

We observe that all synthesized SNCBFs successfully separate the safe and the unsafe
regions.The baseline Fault-Tolerent SNCBF (FT-SNCBF) method did not guarantee verifiable
results and achieved only 14.8% coverage after training for 39.4 minutes. The proposed
verifiable safe synthesis for smooth SNCBF achieves superior safe region coverage (72.5%)
with longer training time (64.2 minutes). The proposed ReLU SNCBF approach achieves a
coverage of 45.7% and reduces training time to 17.6 minutes due to efficient verification.

3.5 Conclusion

In this paper, we considered the problem of synthesizing a verifiably safe NCBF for stochastic
control systems. To address the challenges of synthesizing a verifiably safe SNCBF, we
proposed a verification-free synthesis for SNCBF with smooth activation functions. To further
address the problem, we extended our framework to a ReLU SNCBF by deriving safety
conditions with Tanaka’s formula for a single hidden layer ReLU SNCBF and proposing
efficient verification algorithms. We proposed verifiers for VITL synthesis for SNCBFs with
smooth activation functions and ReLU activation functions. We validated our synthesis
and verification frameworks in three cases, namely, the inverted pendulum, Darboux, and
the unicycle model. The results of the experiment illustrated the improvement in efficiency
and coverage compared to the baseline method and demonstrated the advantages and
disadvantages of using a smooth SNCBF or a ReLU SNCBF.

Limitations: The paper presented a comprehensive study of NCBFs for stochastic systems
with smooth and ReLU activation functions for a single hidden layer. However, the synthesis
and verification of multi-hidden-layer SNCBFs with ReLU activation functions remains an
open problem, and we will study this in future work.

94

Chapter 4

Resilient Safe Control under
Low-Dimensional Sensor Faults

Sensor faults and attacks may cause errors in the sensor measurements and system dynamics,
which leads to erroneous control inputs and hence safety violations. In this chapter, we
improve the robustness against sensor faults and attacks by proposing a class of Fault-Tolerant
Control Barrier Functions (FT-CBFs) for nonlinear systems. Our approach maintains a set
of state estimators according to fault patterns and incorporates CBF-based constraints to
ensure safety under sensor faults. We then propose a framework for joint safety and stability
by integrating FT-CBFs with Control Lyapunov Functions. We propose a sum-of-squares
(SOS) based approach to verify the feasibility of FT-CBFs for both sensor faults. We evaluate
our approach via case study on a wheeled mobile robot (WMR) system in the presence of a
sensor attack.

Inspired by the universal approximation power of neural networks, there is a growing trend
toward representing CBFs using neural networks, leading to the notion of neural CBFs
(NCBFs). Current NCBFs, however, are trained and deployed in benign environments,
making them ineffective for scenarios where robotic systems experience sensor faults and
attacks. We derive the necessary and sufficient conditions for FT-NCBFs to guarantee
safety, and develop a data-driven method to learn FT-NCBFs by minimizing a loss function
constructed using the derived conditions. Using the learned FT-NCBF, we synthesize a control
input and formally prove the safety guarantee provided by our approach. We demonstrate
our proposed approach using two case studies: obstacle avoidance problem for an autonomous
mobile robot and spacecraft rendezvous problem

This chapter made the following contributions:

95

• We propose High-order Stochastic CBFs (HOSCBF) for the system with high relative
degree and propose FT-SCBFs with high order degree to ensure finite time safety
when sensor faults occur. We propose an SOS-based scheme to verify the feasibility of
constraints of FT-SCBFs with high relative degree.

• We compose HOSCBFs with Control Lyapunov Functions (CLFs) to provide joint
guarantees on safety and stability under sensor faults.

• We evaluate our approach on a wheeled mobile robot (WMR) system in the presence
of a sensor attack. The proposed HOSCBF-CLF ensures safety and convergence of a
wheeled mobile robot (WMR) system in the presence of a sensor attack.

• We propose FT-NCBFs for robotic systems under sensor faults and attacks. We derive
the necessary and sufficient conditions for FT-NCBFs to guarantee safety. Based on
the derived conditions, we develop a data-driven method to learn FT-NCBFs.

• We develop a fault-tolerant framework which utilizes our proposed FT-NCBFs for
safety-critical control synthesis. We prove that the synthesized control inputs guarantee
safety under all fault and attack patterns.

• We evaluate our approach using two case studies on the obstacle avoidance problem of
a mobile robot and the spacecraft rendezvous problem. We show that our approach
guarantees the robot to satisfy the safety constraint regardless of the faults and attacks,
whereas the baseline employing the existing NCBFs fails.

The remainder of this chapter is organized as follows. Section 4.1 presents the related work.
Section 4.2 presents background and preliminaries. Section 4.3 proposes a HOSCBF-based
control policy for systems under sensor faults and attacks as well as a scheme to verify the
feasibility of HOSCBFs. Section 4.4 proposes a framework for joint safety and stability
via HOSCBF-CLFs. Section 4.5 presents Fault Tolerant NCBF. Section 4.6 concludes the
chapter.

4.1 Related Work

Fault-tolerant control systems (FTCS) aim to accommodate faults and maintain stability
of the system with little or acceptable degradation in performance. See [45] for an in-depth

96

treatment. FTCS are classified into two main types, namely, active FTCS and passive FTCS
[46]. In active FTCS, Fault Detection and Isolation (FDI) plays a significant role and has
been studied for decades. See [112] for more details.

Active FTCS against sensor faults and attacks include statistical hypothesis testing for
stochastic systems [113], and unknown input observers for deterministic systems [114]. Kalman
Filter (KF) and Extended Kalman Filter (EKF) are extensively used in FDI applications
such as [115] for MIMO system. More recently, data-driven approaches to fault tolerance
have shown promise [116, 117]. While the approach of using Kalman filter residues to identify
potential faults is related to our conflict resolution approach, safety of the system under faults
and attacks is not addressed. Sliding-mode control, as one of popular PFTCS, is proposed for
singularly perturbed systems [118], switched systems [119], fuzzy systems, [120], and Markov
Jump Systems [121, 122]. Several of these works aim to guarantee stability in the presence of
faults [123], which is related to but distinct from the safety criteria we consider.

Passive FTCS against actuator failures is proposed due to its advantage of fast response.
Reliable control for Linear time-invariant (LTI) system under actuator failure is proposed in
[124] and implemented for LTI aircraft model in [125].

Countermeasures incorporating disturbance observer-based CBF are proposed to ensure
robust safety of systems with model uncertainties [47, 48] and model-free safe reinforcement
learning [49]. With the growing attention on faults and attacks, safety guarantees on systems
under faulty components or adversarial environments have become an active research area.
Existing FTC approaches focus on maintaining performance and do not provide provable
safety guarantees. Barrier certificate based fault-tolerant Linear quadratic Gaussian (LQG)
tracking is investigated in [55] for LTI system under sensor fault and false data injection
attack and generalized to multiple possible compromised sensor sets in [126]. Compared with
barrier certificate method, CBF-based approaches have more advantages on flexibility.

4.2 Preliminaries

In this section, we present the system model and provide background on the EKF and CBFs.

97

4.2.1 System Model

Notations. For a set S, we denote int(S) and ∂S as the interior and boundary of S,
respectively. For any vector v, we let [v]i denote the i-th element of v. We let λ(A) denote
the magnitude of the largest eigenvalue of matrix A, noting that this is equal to the largest
eigenvalue when A is symmetric and positive definite. When the value of A is clear, we write
λ.

We consider a nonlinear control system with state xt ∈ Rn and input ut ∈ Rp at time t. The
state dynamics and the system output yt ∈ Rq are described by the stochastic differential
equations

dxt = (f(xt) + g(xt)ut) dt+ σt dWt (4.1)

dyt = cxt dt+ νt dVt (4.2)

where f : Rn → Rn and g : Rn → Rn×p are locally Lipschitz, σt ∈ Rn×n, Wt is an n-
dimensional Brownian motion, c ∈ Rq×n, νt ∈ Rq×q, and Vt is a q-dimensional Brownian
motion.

The safety conditions of a system are specified in terms of forward invariance of a pre-defined
safe region. We define the safe region as follows.

Definition 4.1 (Safe Region). The safe region of the system is a set C ⊆ Rn defined by

C = {x : h(x) ≥ 0}, ∂C = {x : h(x) = 0} (4.3)

where h : Rn → R is twice-differentiable on C.

We assume throughout the paper that x0 ∈ int(C), i.e., the system is initially safe. Let
f(x, u) = f(x) + g(x)u. The uniform detectability property is defined as follows.

Definition 4.2 (Uniform Detectability). The pair [∂f
∂x
(x, u), c] is uniformly detectable if there

exists a bounded, matrix-valued function Θ(x) and a real number η > 0 such that

wT
(
∂f

∂x
(x, u) + Θ(x)c

)
w ≤ −η||w||2

for all w, u, and x.

98

4.2.2 Background and Preliminary Results

Let x̂t denote the EKF estimate of xt. The EKF for the system described by (4.1) and (4.2)
is defined by

dx̂t = (f(x̂t) + g(x̂t)ut)dt+Kt(dyt − cx̂t),

where Kt = Ptc
TR−1

t and Rt = νtν
T
t . The matrix Pt is the positive-definite solution to

dP

dt
= FtPt + PtF

T
t +Qt − PtcTR−1

t cPt

where Qt = σtσ
T
t and Ft = ∂f

∂x
(x̂t, ut). To utilize EKF, we make the following assumptions.

Assumption 4.1. The SDEs (4.1) and (4.2) satisfy the conditions:

1. There exist constants β1 and β2 such that E(σtσTt) ≥ β1I and E(νtν
T
t) ≥ β2I for all t.

2. The pair [∂f
∂x
(x, u), c] is uniformly detectable.

3. Let ϕ be defined by

f(x, u)− f(x̂, u) = ∂f

∂x
(x− x̂) + ϕ(x, x̂, u).

Then there exist real numbers kϕ and ϵϕ such that

||ϕ(x, x̂, u)|| ≤ kϕ||x− x̂||22

for all x and x̂ satisfying ||x− x̂||2 ≤ ϵϕ.

One can obtain kϕ by considering a compact subset κ ⊆ R. For instance, given a function f
that is twice differentiable with respect to x in subset κ, we have

kϕ = max
1≤i≤n

sup
x∈κ
∥∇2fi(x, u)∥,

where ∇2f is the Hessian matrix. The bounds on estimation error ϵϕ can be calculated via an
integral formula [127, Chapter 20]. More details can be found in [128]. The following result
describes the accuracy of the EKF.

99

Theorem 4.1 ([128]). Suppose that the conditions of Assumption 4.1 hold. Then there exists
δ > 0 such that σtσTt ≤ δI and νtνTt ≤ δI. For any 0 < ϵ < 1, there exists γ > 0 such that

Pr

(
sup
t≥0
||xt − x̂t||2 ≤ γ

)
≥ 1− ϵ.

We next provide background and preliminary results on stochastic CBFs. The following
theorem provides sufficient conditions for safety of a stochastic system. Given a finite time
T , suppose the mapping h is a continuous function with linear function kx as the class-κ
function, where k ≥ 0. Let the control input ut be chosen to satisfy

∂h

∂x
(f(xt) + g(xt)ut) +

1

2
tr

(
σTt
∂2h

∂x2
(xt)σt

)
≥ −kh(xt). (4.4)

Let ζ = supx∈C h(x) and x0 ∈ int(C). By Proposition 3.1 we have

Pr(xt ∈ int(C), 0 ≤ t ≤ T) ≥ (
h(x0)

ζ
)e−ζT .

Theorem 4.2. For a system (1)–(2) with safety region defined by (3), define

hγ = sup
x,x0
{h(x) : ||x− x0||2 ≤ γ and h(x0) = 0},

where ĥ(x) := h(x) − hγ. Let ∂h
∂x

denote the derivative ∂h
∂x
|x=x̂ for simplicity. Let zt ∈ Rn

represent the estimation error, where zt = (xt − x̂t). Suppose that ut is chosen to satisfy

∂h

∂x
(f(x̂t) + g(x̂t)ut)−

∥∥∥∥∂h∂xKtc

∥∥∥∥
2

γ +
1

2
tr

(
νTt K

T
t

∂2h

∂x2
(x̂t)Ktνt

)
≥ −ĥ(x̂t). (4.5)

Then Pr(xt ∈ C, 0 ≤ t ≤ T | ||xt − x̂t||2 ≤ γ) ≥ (ĥ(x0)
ζ

)e−ζT .

Proof. We have the estimate x̂ yields

dx̂t = f̄ (x̂t, ut) dt+Kt (cxtdt+ νtdVt − cx̂tdt)

=
(
f̄ (x̂t, ut) +Ktc (xt − x̂t)

)
dt+KtνtdVt

100

Given ||xt − x̂t||2 ≤ γ, we have

∂ĥ

∂x
Ktc (xt − x̂t) ≥ −

∥∥∥∥∥∂ĥ∂xKtc

∥∥∥∥∥
2

∥zt∥2 ≥ −

∥∥∥∥∥∂ĥ∂xKtc

∥∥∥∥∥
2

γ

We then choose ut to satisfy (4.5). Then, we have

∂ĥ

∂x
(f (x̂t) + g (x̂t)ut +Ktc (xt − x̂t))+

1

2
tr

(
νTt K

T
t

(
∂2ĥ

∂x2

)
Ktνt

)
+ ĥ(x̂t) ≥

∂h

∂x
(f(x̂t) + g(x̂t)ut)−

∥∥∥∥∂h∂xKtc

∥∥∥∥
2

γ+

1

2
tr

(
νTt K

T
t

∂2h

∂x2
(x̂t)Ktνt

)
+ ĥ(x̂t) ≥ 0

Hence, by Proposition 1, we have Pr(xt ∈ C, 0 ≤ t ≤ T | ||xt − x̂t||2 ≤ γ) ≥ (ĥ(x0)
ζ

)e−ζT .

Intuitively, Eq. (4.5) implies that as the state approaches the boundary, the control input is
chosen such that the rate of increase of the barrier function decreases to zero. Hence Theorem
4.2 implies that if there exists an SCBF for a system, then the safety condition is satisfied
with probability greater or equal to (1− ϵ)(ĥ(x0)

ζ
)e−ζT when an EKF is used as an estimator

and the control input is chosen at each time t to satisfy (4.5). We next present a probabilistic
guarantee for HOCBFs within a finite time horizon.

Definition 4.3 (SCBF). The function h is a Stochastic Control Barrier Function (SCBF)
of the system, if for all x̂t satisfying h(x̂t) > 0 there exists ut s.t. ∀zt with ∥zt∥ ≤ γ (4.5) is
satisfied.

There may not exist a value of ut to satisfy (4.5) when ∂h
∂x
g(x) = 0. To address this problem,

CBF with high relative degree has been proposed in deterministic [20] and stochastic [44]
settings.

101

Let d = 0, 1, . . . and define dth order differentiable function hd(x) as

h0(x) = h(x),

h1(x) =
∂h0

∂x
f(x, u) +

1

2
tr

(
σT
(
∂2h0

∂x2

)
σ

)
+ h0(x),

...

hd+1(x) =
∂hd

∂x
f(x, u) +

1

2
tr

(
σT
(
∂2hd

∂x2

)
σ

)
+ hd(x).

Define Cd =
{
x : hd(x) ≥ 0

}
. The following theorem provides sufficient conditions for safety

of a high-degree system.

Theorem 4.3. Let C =
⋂d′

d=0 Cd. Suppose that there exists d′ such that ∂hd
′

∂x
g(x)u ̸= 0. If ut

is chosen to satisfy

∂hd
′

∂x
(f(x, u)) +

1

2
tr

(
σT
∂2hd

′

∂x2
σ

)
≥ −hd′(x). (4.6)

Let ζd = supx∈Cd hd(x). Then Pr(xt ∈ C, 0 ≤ t ≤ T) ≥
∏d′

d=0(
hd(x0)
ζd

)e−ζ
dT if x0 ∈ C.

Proof. Suppose that ut satisfying the conditions of the theorem is chosen at each time t.
Theorem 2 implies that hd′ (xt) ≥ 0 when 0 ≤ t ≤ T with probability greater or equal
to (h

d′ (x0)

ζd′
)e−ζ

d′T . By definition of hd(x) we have that ∂hd
′−1

∂x
g(x)u = 0. We also have

Pr(xt ∈ Cd
′−1, 0 ≤ t ≤ T |xt ∈ Cd

′
) ≥ (h

d′−1(x0)

ζd′−1)e−ζ
d′−1T . Proceeding inductively, we have

Pr(xt ∈ C, 0 ≤ t ≤ T) ≥ P where

P =
d′∏
i=1

Pr(xt ∈ Ci−1, 0 ≤ t ≤ T |xt ∈ Ci)

· Pr(xt ∈ Cd
′
, 0 ≤ t ≤ T).

Finally, we have Pr(xt ∈ C, 0 ≤ t ≤ T) ≥
∏d′

d=0(
hd(x0)
ζd

)e−ζ
dT .

Definition 4.4. The function hd
′ is a high-order CBF (HOCBF) of relative degree d′ for

system (4.1)-(4.2) if for all x ∈ C there exists u satisfying (4.6).

102

4.3 Safe Control Under Sensor Faults and Attacks

In this section, we consider the system under sensor faults and derive safety guarantees. We
first present the overview of our approach, followed by detailed formulation of faults and
fault-tolerant control framework.

4.3.1 Overview of the Approach

CBF constraint 1

CBF constraint m

…
Estimator 1

Estimator m

…

State
estimates

Linear
constraints

PlantOptimizer

Outputs

Control
inputs

Figure 4.1: Schematic illustration of our proposed approach for system under sensor faults
and attacks.

To ensure safety of nonlinear systems under sensor faults and attacks, we propose a class of
CBFs, which is shown in Figure 4.1 and constructed as follows. We maintain a set of state
estimators, each omitting a set of sensors associated with one fault pattern and then use CBF
constraints to ensure that each of the estimated states remains within the safe region. The
intuition of our approach is that one can simply ignore the faulty measurements by omitting
the sensors of each fault pattern and construct CBFs for each estimate. However, it may be
infeasible to satisfy all CBF constraints using a single control input when faults occur and the
state estimates deviate due to the fault. To resolve conflicts, we propose a threshold-based
method to exclude outlier estimates and relax the corresponding CBF constraints. Since
the index of the faulty sensor is unknown, the state estimates may not be consistent. We
call the inconsistency ’conflicts’. To resolve conflicts, we maintain a second set of estimators
omitting sensors affected by conflicting fault patterns and propose a threshold-based method
to relax Given two constraints that conflict with each other, we compare each state estimate
to the corresponding estimator that excludes all sensors affected by both fault patterns. If

103

the difference between the conflicting estimate and the estimate excluding all sensors affected
by both fault patterns exceeds a given threshold, we relax the corresponding constraint.

4.3.2 Sensor Fault Pattern Formulation

We consider a nonlinear control system whose output may be affected by one of m sensor
faults. The set of possible faults is indexed as {r1, . . . , rm}. Each fault ri maps to a set
of affected observations F(ri) ⊆ {1, . . . , q}. We assume that F(ri) ∩ F(rj) = ∅ for i ̸= j.
Let r ∈ {r1, . . . , rm} denote the index of the fault experienced by the system. The system
dynamics are described as

dxt = (f(xt) + g(xt)ut) dt+ σt dWt (4.7)

dyt = (cxt + at) dt+ νt dVt, (4.8)

where the vector at ∈ Rq represents the impact of the fault and is constrained by supp(at) ⊆
F(r). Hence, if fault ri occurs, then the outputs of any of the sensors indexed in F(ri) can
be arbitrarily modified by the fault. The sets F(r1), . . . ,F(rm) are known, but the value of
ri is unknown. In other words, the set of possible faults is known, but the exact fault that
has occurred is unknown to the controller.

To illustrate, we take an autonomous vehicle system as an example. Consider an autonomous
system equipped with two INS sensors, a GNSS and one LiDAR system indexed as {1, 2, 3, 4}
for localization measurements denoted as y = {y1, y2, y3, y4}. We consider three possible
attacks: an attack on one of the INS sensors, an attack on another INS sensor, or a
simultaneous GPS/LiDAR spoofing attack. The corresponding fault patterns are given as
F(r1) = {1}, F(r2) = {2}, F(r3) = {3, 4}.

Define ci to be the c matrix with the corresponding rows indexed in F(ri) removed, yt,i to be
equal to the vector yt with the entries indexed in F(ri) removed, and νt,i to be the matrix νt
with rows and columns indexed in F(ri) removed. Define ci,j to be the c matrix with the
corresponding rows indexed in F(ri) and F(rj) removed, where i ̸= j.

We make the following assumption for the sensor fault scenario.

104

Assumption 4.2. The system (4.7)-(4.8) and the sensor fault patterns F(r1), . . . ,F(rm)
satisfy the conditions:

1. The system is controllable.

2. For each i, j ∈ {1, . . . ,m}, the pair
[∂f
∂x
(x, u), ci,j] is uniformly detectable.

Problem Statement: Given a finite time T , a safe set C defined in (4.3) and a parameter
ϵ ∈ (0, 1), compute a control policy that, at each time t, maps the sequence {yt′ : t′ ∈ [0, t)} to
an input ut such that, for any fault r ∈ {r1, . . . , rm}, Pr(xt ∈ C, 0 < t < T) ≥ (1− ϵ)T (T),
for some function T : Rn → (0, 1).

4.3.3 Sensor FTC Strategy Definition

We propose a CBF-based strategy with safety guarantees for a system satisfying Assumption
4.2. The strategy that accommodates sensor faults and attacks is an FTC in a passive manner.
The goal of FTC is to ensure the robustness of the control system to accommodate multiple
component faults without striving for optimal performance for any specific fault condition.

The intuition behind our approach is as follows. Since we do not know the fault pattern
r, we construct estimators excluding faulty sensors by maintaining m EKFs. Each EKF
corresponds to a different possible fault pattern in {r1, . . . rm}. We ensure safety with desired
probability by defining m corresponding SCBFs, each of which results in a different linear
constraint on the control input.

The potential drawback is that the safety guarantees of Theorem 4.2 rely on the existence of
a control input satisfying the safety constraint at each time-step. This assumption may not
hold for two reasons. Firstly, feasible control input u may not exist when ∂h

∂x
g(x) = 0, since

u does not affect states x. Secondly, a feasible solution may not exist when faulty sensor
measurements cause the state estimates to diverge. To address the first reason, we define
higher-order SCBFs such that for d-th degree ∂hd

∂x
g(x) ̸= 0. Then, we choose control input u

to satisfy constraints constructed by higher-order SCBFs. To address the second reason, we
define a set of

(
m
2

)
EKFs to resolve conflicts between the constraints. Each EKF estimator

105

omits all sensors affected by either fault ri or fault rj for some i, j ∈ {1, . . . ,m}, i ̸= j. These
estimators will be used to resolve any deviations between the state estimates from sensors
{1, ...,m}\F(ri) and {1, ...,m}\F(rj).

Let Cγ := {x : ĥd(x) ≥ 0} where ĥd(x) = hd(x)− h̄dγ and

h̄dγ = sup
x,xd,0

{
hd(x) : ∥x− xd,0∥2 ≤ γ and hd(xd,0) = 0

}
(4.9)

Let Cγ =
⋂d′

d=0 Cdγ . To ensure safety as defined in (4.3), we need to show that Pr(xt ∈ C, 0 ≤
t ≤ T) ≥

∏d′

d=0(
ĥd(x0)
ζd

)e−ζ
dT if x0 ∈ C̄γ given x0 ∈ C̄γ and ||xt − x̂t||2 ≤ γ, ∀t.

Proposition 4.1. For a system (4.7)-(4.8) with safety region defined by (4.3), suppose there
exists d′, such that ∂hd

′

∂x
g(x) ̸= 0. Suppose that ut is chosen to satisfy

∂hd
′

∂x
f̄(x̂t, ut)−

∥∥∥∥∂hd′∂x
(x̂t)Ktc

∥∥∥∥
2

γ +
1

2
tr

(
νTt K

T
t

∂2hd
′

∂x
(x̂t)Ktνt

)
≥ −ĥd′(x̂t). (4.10)

Then Pr(xt ∈ C, 0 ≤ t ≤ T | ||xt − x̂t||2 ≤ γ ∀t) ≥
∏d′

d=0(
ĥd(x0)
ζd

)e−ζ
dT if x0 ∈ C̄γ.

Proof. Given ||xt − x̂t||2 ≤ γ ∀t, we suppose that ut is chosen to satisfy (4.10). By Theorem
4.2 and (4.10), we have hd′ (xt) ≥ 0 when 0 ≤ t ≤ T with probability greater or equal to
(ĥ

d′ (x0)

ζd′
)e−ζ

d′T . By definition of relative degree, we have ∂hd

∂x
g(x)u = 0 for d < d′. By definition

of hd′(xt), we have ∂hd

∂x
f(x, 0)+ 1

2
tr
(
σT
(
∂2hd

∂x2

)
σ
)
+hd(x) ≥ 0, where d = d′−1. This implies

hd
′−1(xt) ≥ 0. Similar to the proof of Theorem 4.3, by proceeding inductively, we then have

Pr(xt ∈ C, 0 ≤ t ≤ T | ||xt − x̂t||2 ≤ γ ∀t) ≥
∏d′

d=0(
ĥd(x0)
ζd

)e−ζ
dT if x0 ∈ C̄γ.

The function hd
′ ensures safety of the system with relative degree d′ by Proposition 4.1.

Hence we define the function as follows.

Definition 4.5. The function hd
′ is a higher order SCBF (HOSCBF) of relative degree d′

for system (4.1)-(4.2) if for all x̂t ∈ C there exists ut satisfying (4.10).

We next present a scheme to resolve conflicts between constraints in the case of faults and
attacks. Let Rt,i = νt,iν

T
t,i and Kt,i = P t,ic

T
i (Rt,i)

−1. Here P t,i is the solution to the Riccati

106

differential equation

dP t,i

dt
= Ft,iP t,i + P t,iF

T
t,i +Qt − P t,ic

T
i R

−1

t,i ciP t,i

with Ft,i = ∂f
∂x
(x̂t,i, ut). Define a set of m EKFs with estimates denoted x̂t,i via

dx̂t,i = (f(x̂t,i) + g(x̂t,i)ut) dt+Kt,i(dyt,i − cix̂t,i dt). (4.11)

Each of these EKFs represents the estimate obtained by removing the sensors affected by
fault ri. Furthermore, define yt,i,j, νt,i,j, ci,j, Rt,i,j, and Kt,i,j in an analogous fashion with
entries indexed in F(ri) ∪ F(rj) removed. We assume throughout that the R matrices are
invertible. We then define a set of

(
m
2

)
estimators x̂t,i,j as

dx̂t,i,j = (f(x̂t,i,j) + g(x̂t,i,j)ut) dt

+Kt,i,j(dyt,i,j − ci,jx̂t,i,j dt). (4.12)

When F(ri) ∪ F(rj) = {1, . . . , q}, the open-loop estimator is used for x̂t,i,j.

We then select parameters γ1, . . . , γm ∈ R+, and {θij : i < j} ⊆ R+. The set of feasible
control inputs is defined at each time t using the following steps:

1. Define Zt = {1, . . . ,m}. Define a collection of sets Ωi, i ∈ Zt, by

Ωi ≜

{
u :

∂hd
′
i

∂x

(
f̄(x̂t,i, ut)

)
−
∥∥∥∥∂hd′i∂x (x̂t)Ktc

∥∥∥∥
2

γi

+
1

2
tr

(
νTt K

T
t

∂2hd
′
i

∂x
(x̂t,i)Ktνt

)
≥ −ĥd′i (x̂t,i)

}
(4.13)

Select ut satisfying ut ∈
⋂
i∈Zt

Ωi. If no such ut exists, there exists conflicts between
constraints, i.e., ∃i, j, i ̸= j s.t. Ωi ∩ Ωj = ∅. Then go to Step 2.

2. For each i, j with ||x̂t,i − x̂t,j||2 > θij, set Zt = Zt \ {i} (resp. Zt = Zt \ {j}) if
||x̂t,i − x̂t,i,j||2 > θij/2 (resp. ||x̂t,j − x̂t,i,j||2 > θij/2). If

⋂
i∈Zt

Ωi ̸= ∅, then select
ut ∈

⋂
i∈Zt

Ωi. Else, go to Step 3. This step resolves conflicts between estimations by
comparing the difference between estimations against thresholds θij.

107

3. Remove the indices i from Zt corresponding to the estimators with the largest residue
values yt,i − cix̂t,i until there exists ut ∈

⋂
i∈Zt

Ωi.

We next provide sufficient conditions for this control policy to guarantee safety.

Theorem 4.4. Given x0 ∈ C̄γ, define

h
d

γi
= sup

x,x0

{
hd(x) : ||x− xd,0||2 ≤ γi and hd(xd,0) = 0

}
and ĥdi (x) = hd(x) − h

d

γi
. Suppose γ1, . . . , γm, and θij for i < j are chosen such that the

following conditions are satisfied:

1. Define Λdi (x̂t,i) =
∂hdi
∂x

(x̂t,i)g(x̂t,i). For all i, j ∈ Zt with ||x̂t,i − x̂t,j||2 ≤ θij, there exists
u such that

Λd
′

i (x̂t,i)u > 0 (4.14)

for all i ∈ Z ′
t.

2. For each i, when r = ri,

Pr(||x̂t,i − x̂t,i,j||2 ≤
θij
2
∀j,

||x̂t,i − xt||2 ≤ γi ∀t) ≥ 1− ϵ. (4.15)

Then Pr(xt ∈ C, 0 ≤ t ≤ T) ≥ (1−ϵ)
∏d′

d=0(
ĥd(x0)
ζd

)e−ζ
dT for any fault pattern r ∈ {r1, . . . , rm}.

Proof. Suppose that the fault f = fi. We will show that, if ||x̂t,i − xt||2 ≤ γi and ||x̂t,i −
x̂t,i,j||2 ≤ θij/2 for all t, then ut ∈ Ωi holds. Hence xt ∈ C for 0 ≤ t ≤ T with probability
greater or equal to

∏d′

d=0(
ĥd(x0)
ζd

)e−ζ
dT by Proposition 4.1.

At time t, suppose that ĥd′i (x̂t,i) ≥ 0, and that ||x̂t,i − x̂t,i,j||2 ≤ θij/2. We consider three
cases, namely (i) ||x̂t,j − x̂t,k||2 ≤ θjk for all j, k ∈ Zt, (ii) ||x̂t,i − x̂t,j||2 ≤ θij for all j ∈ Zt,
but there exist j, k ∈ Zt \ {i} such that ||x̂t,j − x̂t,k||2 > θjk, and (iii) ||x̂t,i − x̂t,j||2 > θij for
some j ∈ Zt.

108

Case (i): We will show that there exists u ∈ ∩j∈ZtΩj, and hence in particular ut satisfies Ωi.
Each Ωj can be written in the form

Ωj = {u : Λd
′

j (x̂t,j)ut ≥ ωd
′

j } (4.16)

where ωd′j is a real number that does not depend on ut. Under the assumption 1) of the
theorem, there exists u satisfying (4.14) for all i ∈ Z ′

t. Choose

ut =

(
max
j
{|ωd′j |}/||u||2

)
u.

This choice of ut satisfies ut ∈
⋂
j∈Zt

Ωj, in particular ut ∈ Ωi.

Case (ii): In this case, Step 2 of the procedure is reached and constraints Ωj are removed
until all indices in Zt satisfy ||x̂t,j − x̂t,k||2 ≤ θjk. Since ||x̂t,i − x̂t,j||2 ≤ θij already holds for
all j ∈ Zt, i will not be removed from Zt during this step. After Step 2 is complete, the
analysis of Case (i) holds and there exists a u which satisfies all the remaining constraints,
including Ωi.

Case (iii): Suppose j satisfies ||x̂t,i − x̂t,j||2 > θij. We have

θij < ||x̂t,i − x̂t,i,j + x̂t,i,j − x̂t,j||2
≤ ||x̂t,i − x̂t,i,j||2 + ||x̂t,i,j − x̂t,j||2 (4.17)

≤ θij/2 + ||x̂t,i,j − x̂t,j||2 (4.18)

where Eq. (4.17) follows from the triangle inequality and (4.18) follows from the assumption
that ||x̂t,i − x̂t,i,j||2 ≤ θij/2. Hence ||x̂t,j − x̂t,i,j||2 > θij/2 and j is removed from Zt. By
applying this argument to all such indices j, we have that i is not removed during Step 2 of
the procedure, and thus the analyses of Cases (i) and (ii) imply that ut ∈ Ωi.

From these cases, we have that Ωi holds whenever ĥdi (x̂t,i) ≥ 0. Therefore, by Proposition
4.1, we have

Pr(xt ∈ C, 0 ≤ t ≤ T | ||x̂t,i − x̂t||2 ≤ γi,

||x̂t,i − x̂t,i,j||2 ≤ θij/2 ∀t) ≥
d′∏
d=0

(
ĥd(x0)

ζd
)e−ζ

dT

109

and Pr(xt ∈ C, 0 ≤ t ≤ T) ≥ (1− ϵ)
∏d′

d=0(
ĥd(x0)
ζd

)e−ζ
dT by (4.15).

The bank of functions in Proposition 4.4 ensures the safety of the system with faulty
components. Hence we define the functions as follows.

Definition 4.6. The bank of functions hd′1 , . . . , hd
′
m are Fault-Tolerant High Order Stochastic

Control Barrier Functions (FT-HOSCBFs) of relative degree d′ for system (4.1)-(4.2) if
conditions in Theorem 4.4 are satisfied.

4.3.4 Feasibility Verification

In order for Theorem 4.4 to guarantee system safety, the linear constraint (4.14) must hold
for all time t. In what follows, we develop an SOS-based scheme to verify the feasibility of
SCBF, FT-SCBF and FT-HOCBF constraints for both fault-free case and the case with
sensor faults and attacks.

We focus on verification for a constant-gain Kalman filter. In the case where the system is
LTI with constant noise, the steady-state Kalman filter gain is optimal and hence satisfies the
stochastic stability criteria by Theorem 4.1. In this subsection, we omit the time subscript
of xt, x̂t and zt, i.e., (x, x̂ and z) to simplify the expression. We consider an LTI system
described by (4.1) and (4.2), where f(x) = F , g(x) = G, the matrices Rt = R and Qt = Q.
For an LTI system, Pt is the covariance matrix for the estimation error and will converge to
a steady-state value P . The Kalman filter has a constant gain given by K = PcTR−1. We
introduce an SOS-based approach to verify the feasibility for this case.

Verification for SCBF

We first present the verification for an SCBF in an attack-free scenario, in which one
SCBF-based safety constraint must be satisfied. We have the following initial result.

Proposition 4.2. Suppose Assumption 4.1 holds. The function h(x̂) is a SCBF if and only
if there is no x̂ ∈ Cγ, z ∈ Rn satisfying ∂h

∂x
g(x̂) = 0 , zT z − γ2 ≤ 0 and ξ(x̂) < 0 where

ξ(x̂) =
∂h

∂x
f(x̂) +

1

2
tr

(
νTKT ∂

2h

∂x2
(x̂)Kν

)
−
∥∥∥∥∂h∂x(x̂)Kc

∥∥∥∥
2

γ + ĥ(x̂). (4.19)

110

Proof. By Theorem 4.2, the set Cγ is positive invariant given ∥x− x̂∥ ≤ γ if for all time t ut
is chosen to satisfy (4.5) ∀zt with ∥zt∥ ≤ γ. By Definition 4.3, we have that h(x̂) is a SCBF
if and only if (4.5) holds for all x̂ ∈ Cγ := {x : ĥ(x) ≥ 0}. If ∂h

∂x
g(x̂) ̸= 0, we can choose u s.t.

∂h

∂x
g(x̂)u ≥ sup

∥z∥≤γ

{
−∂h
∂x
f(x̂)−

1

2
tr

(
νTKT ∂

2h

∂x2
(x̂)Kν

)
+

∥∥∥∥∂h∂x(x̂)Kc
∥∥∥∥
2

γ − ĥ(x̂)
}
.

Since ∥z∥ ≤ γ is a compact set, such a u always exists. Hence, (4) fails if and only if ∃x̂ and
z with ∥z∥ ≤ γ s.t. (i) ∂h

∂x
g(x̂) = 0, and (ii) ξ(x̂) < 0 hold simultaneously.

Based on the proposition, we can formulate the following conditions via the Positivstellensatz.

Lemma 4.1. A polynomial h(x̂) is an SCBF for system (4.1)–(4.2) if and only if there exist
polynomials ρ(x̂, z), sum-of-squares polynomials qS(x̂, z), integers r1 such that

ϕ(x̂, z) + χ(x̂, z) + ψ(x̂) = 0, (4.20)

and

ϕ(x̂, z) =
∑

S⊆{1,...,3}

qS(x̂, z)
∏
i∈S

ϕi(x̂, z)

χ(x̂, z) = (ξ(x̂))2r1

ψ(x̂) =
m∑
i=1

ρi(x̂, z)

[
∂h

∂x
g(x̂)

]
i

,

where ϕ1(·) = −ξ(x̂), ϕ2(·) = −zT z + γ2 and ϕ3(·) = ĥ(x̂).

Proof. By Proposition 4.2, we have h(x̂) is an SCBF iff there exist no x̂, z such that∂h
∂x
g(x̂) = 0,

zT z− γ2 ≤ 0 and −ξ(x̂) > 0. The latter two conditions are equivalent to −zT z+ γ2 ≥ 0, and
−ξ(x̂) ≥ 0, ξ(x̂) ̸= 0. These conditions are equivalent to (4.20) by the Positivstellensatz.

111

Verification for FT-SCBF

We now extend the result into the case where sensors may experience faults and attacks.
Specifically, we consider a nonlinear control system whose output may be affected by one of
m sensor faults described by (4.7) and (4.8).

In this case, we need to verify the feasibility of u to satisfy m SCBF constraints under m
possible sensor faults. To achieve this, we extend Proposition 4.2 to verify the feasibility of a
set of SCBF constraints via Farkas’ Lemma.

Corollary 4.1. Define A(x) and Ξ(x) as follows.

A(x) = (A1(x) . . . Am(x))
T

Ξ(x) = [ξ1(x) . . . ξm(x)]
T

(4.21)

Control input u that is chosen to satisfy a set of linear constraints can be written as

A(x)u ≤ Ξ(x, z). (4.22)

By Farkas’s Lemma, the system A(x)u ≤ Ξ(x) has a solution u ∈ Rp, if and only if there
does not exist y ∈ Rm such that

AT (x̂)y = 0, y ≥ 0, ΞT (x̂)y < 0. (4.23)

We define A(x) and Ξ(x) as follows

A(x̂) =

(
−∂h
∂x
g(x̂1) . . .−

∂h

∂x
g(x̂m)

)T
,

Ξ(x̂) = [ξ(x̂1) . . . ξ(x̂m)]
T .

Proposition 4.3. Suppose Assumption 4.1 and conditions in Theorem 4.4 hold. There exists a
feasible solution u satisfying a set of m SCBF constraints if and only if there is no x̂1, . . . , x̂m ∈
Cγ, z1, . . . , zm ∈ Rn and y ∈ Rm satisfying zTj zj − γ2 ≤ 0, (x̂j − x̂k)

T (x̂j − x̂k) − γ2 ≤ 0,
AT (x̂j)y = 0, y ≥ 0 and ΞT (x̂j)y < 0, ∀j, k ∈ {1, . . . ,m}.

112

Proof. By Definition 4.3, we have ĥ(x̂j) = h(x̂j) − hγ ≥ 0 for all x̂j ∈ Cγ. By Theorem
4.1, we have zTj zj − γ2 ≤ 0 for all j. By Theorem 4.4, we have (x̂j − x̂k)T (x̂j − x̂k) ≤ γ2,
∀j, k ∈ {1, . . . ,m}. For the case where ĥ(x̂) = 0, u can be chosen to satisfy (4.5) for all
j. By Corollary 4.1, we have the existence of u if and only if there does not exist y ∈ Rm

such that (4.23) hold. Conversely, if for some x̂0, x̂1, z0 and y0 satisfying ∂h
∂x
g(x̂0) = 0,

(x̂0 − x̂1)T (x̂0 − x̂1)− γ2 ≤ 0, zT0 z0 − γ2 ≤ 0, AT (x̂0)y0 = 0, y0 ≥ 0 and ΞT (x̂0)y0 < 0, the set
C is not positive invariant.

Then, we can formulate the following conditions via the Positivstellensatz.

Lemma 4.2. There exists a feasible solution u satisfying a set of m SCBF constraints if and
only if there exist polynomials ρ(x̂j, y, zj), sum-of-squares polynomials q(x̂j, y, zj), integers
s = 4m+m2, r1, . . . , rm such that

ϕ(x̂j, x̂k, y, zj) + χ(x̂j, x̂k, y, zj) + ψ(x̂j, x̂k, y, zj) = 0, (4.24)

and

ϕ(·) =
∑

S⊆{1,...,s}

qS(x̂j, x̂k, y, zj)
∏
i∈S

ϕi(x̂j, x̂k, y, zj)

χ(·) =
∏

∀j∈{1,...,m}

(
−ΞT (x̂j)y

)2rj
ψ(·) =

m∑
j=1

(
p∑
i=1

ρ0i (x̂j, x̂k, y, zj)
[
AT (x̂j)y

]
i

)
,

where ϕ{1,...,m}(·) = −ΞT (x̂j)yj, ϕ{m+1,...,2m}(·) = ĥ(x̂j), ϕ{2m+1,...,3m}(·) = −zTj zj + γ2,
ϕ{3m+1,...,4m}(·) = yj and ϕ{4m+1...4m+m2}(·) = −(x̂j − x̂k)T (x̂j − x̂k) + γ2.

Proof. By Proposition 4.3, we have h(x̂) is an SCBF if and only if there exist no x̂1, . . . , x̂m,
z1, . . . , zm and y satisfying (x̂j− x̂k)T (x̂j− x̂k)−γ2 ≤ 0, ∀j, k ∈ {1, . . . ,m}, zTj zj−γ2 ≤ 0 ∀j,
AT (x̂)yj = 0, yj ≥ 0 and ΞT (x̂)yj < 0. The conditions are equivalent to ∀j, k ∈ {1, . . . ,m},

− zTj zj + γ2 ≥ 0,

− (x̂j − x̂k)T (x̂j − x̂k) + γ2 ≥ 0,

AT (x̂j)y = 0, y ≥ 0, −ΞT (x̂j)y ≥ 0,ΞT (x̂j)y ̸= 0

113

These conditions are equivalent to (4.24) by the Positivstellensatz.

Verification for FT-SCBF with high relative degree

We further extend the proposition 4.3 and Lemma 4.2 to verify the feasibility of a set of
HOSCBF constraints.

We define A(x) and Ξ(x) as follows

A(x̂) =

(
−∂h

d′

∂x
g(x̂1), . . . ,−

∂hd
′

∂x
g(x̂m)

)T
,

Ξ(x̂) =[ξ1(x̂1), . . . , ξm(x̂m)]
T , where

ξi(x̂) =
∂hd

′

∂x
f(x̂) +

1

2
tr

(
νTKT ∂

2hd
′
i

∂x2
(x̂)Kν

)
−∥∥∥∥∂hd′i∂x (x̂)Kc

∥∥∥∥
2

γi + ĥd
′

i (x̂).

Proposition 4.4. Suppose Assumption 4.1 and conditions in Theorem 4.4 hold. There exists
a feasible solution u satisfying a set of m HOSCBF constraints with relative degree d if and only
if there is no x̂1, . . . , x̂m ∈ Cγ, z1, . . . , zm ∈ Rn and y ∈ Rm satisfying ĥd(x̂j) ≥ 0, ∀j,∀d ≤ d′,
(x̂j − x̂k)T (x̂j − x̂k)− γ2 ≤ 0, ∀j, k ∈ {1, . . . ,m}, zTj zj − γ2 ≤ 0 ∀j, AT (x̂)y = 0, y ≥ 0 and
ΞT (x̂)y < 0.

Proof. By Theorem 4.1, we have zTj zj − γ2 ≤ 0 for all j with m EKFs. By the Definition
4.5, we have ĥd(x̂j) = hd(x̂j) − hγ ≥ 0 for all x̂j ∈ C, if and only if the following three
conditions are satisfied. For all x̂j ∈ C, ĥd(x̂) ≥ 0 for all d ≤ d′. Next, by Theorem 4.4,
(x̂j − x̂k)T (x̂j − x̂k) ≤ γ2, ∀j, k ∈ {1, . . . ,m}. Moreover, ∂hd

′

∂x
g(x̂j) ̸= 0 and u are chosen to

satisfy (4.10) for all j. By Corollary 4.1, we have a solution u ∈ Rp exists, if and only if
there does not exist y ∈ Rm such that (4.23) holds. Conversely, if for some x̂0, x̂1, z0 and y0
satisfying ĥd(x̂0) ≥ 0, (x̂0 − x̂1)T (x̂0 − x̂1)− γ2 ≤ 0, zT0 z0 − γ2 ≤ 0, AT (x̂)y0 = 0, y0 ≥ 0 and
ΞT (x̂)y0 < 0, the set C is not positive invariant.

Lemma 4.3. There exists a feasible solution u satisfying a set of m HOSCBF constraints if
and only if there exist polynomials ρ(x̂j, x̂k, y, zj), sum-of-squares polynomials qS(x̂j, x̂k, y, zj),

114

integers d′1, . . . , d′m, s = 3m+m2 +
∑m

j=1 d
′
j, r1, . . . , rm such that

ϕ(x̂j, x̂k, y, zj) + χ(x̂j, x̂k, y, zj) + ψ(x̂j, x̂k, y, zj) = 0, (4.25)

and

ϕ(·) =
∑

S⊆{1,...,s}

qS(x̂j, x̂k, y, zj)
∏
i∈S

ϕi(x̂j, x̂k, y, zj)

χ(·) =
∏

∀j∈{1,...,m}

(
−ΞT (x̂j)y

)2rj
ψ(·) =

m∑
j=1

(
p∑
i=1

ρ0i (x̂j, x̂k, y, zj)
[
AT (x̂j)y

]
i

)

where

ϕ{1,...,m}(·) = −ΞT (x̂j)y

ϕ{m+1,...,2m}(·) = yj

ϕ{2m+1,...,3m}(·) = −zTj zj + γ2

ϕ{3m+1...3m+m2}(·) = −(x̂j − x̂k)T (x̂j − x̂k) + γ2

and for dj ∈ {0, . . . , d′j}, ϕ{3m+m2+1,...,3m+m2+
∑m

j=1 d
′
j}(·) = ĥdj(x̂j).

Proof. By proposition 4.4, we have hd(x̂) are HOSCBFs if and only if there exist no
x̂1, . . . , x̂m ∈ Cγ, z1, . . . , zm ∈ Rn and y ∈ Rm satisfying ĥd(x̂j) ≥ 0,∀j,∀d ≤ d′, (x̂j −
x̂k)

T (x̂j − x̂k) − γ2 ≤ 0, ∀j, k ∈ {1, . . . ,m}, zTj zj − γ2 ≤ 0,∀j, AT (x̂)y = 0, y ≥ 0 and
ΞT (x̂)y < 0. The conditions are equivalent to ∀j, k ∈ {1, . . . ,m},

ĥdj(x̂j) ≥ 0,∀dj ≤ d′j

− (x̂j − x̂k)T (x̂j − x̂k) + γ2 ≥ 0,−zTj zj + γ2 ≥ 0,

AT (x̂j)y = 0, y ≥ 0, −ΞT (x̂j)y ≥ 0,ΞT (x̂j)y ̸= 0

These conditions are equivalent to (4.25) by the Positivstellensatz.

115

4.4 Joint Safety and Stability Under Sensor Faults and

Attacks

We next present a framework to ensure joint safety and stability for systems with sensor faults
and attacks via CLFs and HOSCBFs. Such an approach has been widely used in fault-free
scenarios.

Define the goal set G ⊆ C by G = {x : w(x) ≥ 0} for some function w for some equilibrium
point xe ∈ G, f(xe) = 0 and g(xe) = 0. Define τ(G) as the first time when xt reaches G.

Problem Statement: Given a goal set G, a safe set C and a parameter ϵ ∈ (0, 1), compute
a control policy that, at each time t, maps the sequence {yt′ : t′ ∈ [0, t)} to an input ut such
that, given a finite stopping time T , for any fault r ∈ {r1, . . . , rm}, Pr(xt ∈ C, 0 ≤ t ≤ T) ≥
(1− ϵ)T (T), for some function T : Rn → (0, 1) and Pr(τ(G) <∞) > 1− ϵ.

4.4.1 HOSCBF-CLF

Our approach towards through asymptotically convergence to goal set G is through the use
of stochastic Control Lyapunov Functions. A function V : Rn → R≥0 is a stochastic CLF for
the SDE (4.1) if, for each xt, we have

inf
u

{
∂V

∂x
f(xt, ut) +

1

2
tr

(
σT
∂2V

∂x2
σ

)}
< −ρV (xt)

η (4.26)

for some ρ > 0 and 0 < η < 1.

The following result describes the stochastic stability of systems using CLFs with [129,
Theorem 3.1] providing sufficient conditions for the following result. As a preliminary, define
τ(z) = inf {t : V (xt) ≤ z}.

Proposition 4.5 ([129, Theorem 3.1]). Suppose there exists a V such that, whenever
V (xt) ≥ V , we choose ut to satisfy

∂V

∂x
f(xt) +

∂V

∂x
g(xt)ut +

1

2
tr

(
σT
∂2V

∂x2
σ

)
< −ρV (xt)

η

116

for some ρ > 0 and 0 < η < 1. For x ∈ Rn\{x|V (x) = 0}, Pr(τ(V) <∞|x0 = x) = 1.

In the case with sensor faults and attacks, we consider a system with dynamics (4.1) and an
Extended Kalman Filter estimator x̂t. The following result is an extension of Proposition 4.5
to this case.

Lemma 4.4. Suppose that there exist constants M > 0 and k ∈ N such that, for any x and
x′, |V (x)− V (x′)| ≤M ||x− x′||k2. Suppose Pr(||x̂t − xt||2 ≤ γ ∀t) > 1− ϵ and, at each time
t when V (x̂t) > V , we have

∂V

∂x
(x̂t)(f(x̂t) + g(x̂t)ut) + γ||∂V

∂x
(x̂t)Ktc||2

+
1

2
tr

(
νTt K

T
t

∂2V

∂x2
(x̂t)Ktνt

)
< −ρ(V (x̂t) +Mγk)η. (4.27)

Then
Pr(τ(V +Mγk) <∞) > 1− ϵ

for all xt ∈ Rn\{xt|V (xt) = 0}.

Proof. The dynamics of x̂t are given by

dx̂t = f(x̂t, ut) +Ktc(xt − x̂t) +KtνtdVt.

If ||x̂t − xt||2 ≤ γ, the differential generator LV (x̂t) satisfies

LV (x̂t) =
∂V

∂x
(x̂t)f(x̂t, ut) +

∂V

∂x
(x̂t)Ktc(xt − x̂t) +

1

2
tr

(
νTt K

T
t

∂2V

∂x2
(x̂t)Ktνt

)
≤ ∂V

∂x
(x̂t)f(x̂t, ut) + γ||∂V

∂x
(x̂t)Ktc||2 +

1

2
tr

(
νTt K

T
t

∂2V

∂x2
(x̂t)Ktνt

)
.

since

∂V

∂x
(x̂t)Ktc(xt − x̂t) ≤ ||∂V

∂x
(x̂t)Ktc||2||xt − x̂t||2

≤ γ||∂V
∂x

(x̂t)Ktc||2.

Since |V (xt)−V (x̂t)| ≤M ||xt− x̂t||k2, we have V (xt) ≤ V (x̂t)+M ||xt− x̂t||k2 and ρ(V (xt))
η ≤

ρ(V (x̂t) +Mγk)η, for some ρ > 0 and 0 < η < 1.

117

Hence, if (4.27) holds, then

Pr
(
inf {t : V (x̂t) ≤ V } <∞ | ||xt − x̂t||2 ≤ γ ∀t

)
= 1

by Proposition 4.5. Since |V (xt)−V (x̂t)| ≤M ||xt−x̂t||k2, we have V (xt) ≤ V (x̂t)+M ||xt−x̂t||k2,
and so

Pr(V (xt) > V +Mγk| ||xt − x̂t||2 ≤ γ ∀t)

≤ Pr(V (x̂t) +Mγk > V +Mγk| ||xt − x̂t||2 ≤ γ ∀t)

= Pr(V (x̂t) > V | ||xt − x̂t||2 ≤ γ ∀t)

Hence Pr(τ(V +Mγk) < ∞| ||xt − x̂t||2 ≤ γ ∀t) = 1 and thus Pr(τ(V +Mγk) < ∞) >

1− ϵ.

Motivated by this result, we next state a control policy that combines CLFs and HOSCBFs
to ensure safety and stability. At each time t, the set of feasible control actions is defined as
follows:

1. Define Yt(V) = {j : V (x̂t,j) > V), and initialize Ut = Yt(V). Define a collection of sets
Υi, i ∈ Ut, by

Υi ≜

{
u :

∂Vi
∂x

f(x̂t,i, u) + γi||
∂Vi
∂x

(x̂t,i)c||2

+
1

2
tr

(
νTt,iK

T
t,i

∂2V

∂x2
(x̂t,i)Kt,iνt,i

)
< −ρi(V (x̂t) +Mγk)ηi

}
(4.28)

for some ρi, ηi, i = 1, . . . ,m. Select any

ut ∈

(⋂
i∈Zt

Ωi

)
∩

(⋂
j∈Ut

Υj

)
,

where Ωi is defined as in (4.13). If no such ut exists, go to Step 2.

2. For each i, j with ||x̂t,i − x̂t,j||2 > θij, set Zt = Zt \ {i} and Ut = Ut \ {i} (resp.
Zt = Zt \ {j} and Ut = Ut \ {j}) if ||x̂t,i− x̂t,i,j||2 > θij/2 (resp. ||x̂t,j − x̂t,i,j||2 > θij/2).

118

If (⋂
i∈Zt

Ωi

)
∩

(⋂
j∈Ut

Υj

)
̸= ∅,

then select ut from this set. Else go to Step 3.

3. Remove the sets Ωi and Υi corresponding to the estimators with the largest residue
values until there exists a feasible ut.

This policy is similar to the HOSCBF-based approach of Section 4.3, with additional con-
straints to satisfy the stability condition. This leads to another m linear inequalities. The
following result gives sufficient conditions for safety and stability.

Theorem 4.5. Suppose that ĥd′1 , . . . , ĥd
′
m, γ1, . . . , γm, V , V , and θij satisfy the constraints of

Theorem 4.4, as well as the following: (i) The function V satisfies {x : V (x) ≤ V +Mγki } ⊆ G
for all i. (ii) Define Γi(x̂t,i) =

∂Vi
∂x
g(x̂t,i). Let X ′

t ⊆ Xd′
t (δ) and Y ′

t ⊆ Yt(V) be sets satisfying
||x̂t,i − x̂t,j||2 ≤ θij for all i ∈ X ′

t and j ∈ Y ′
t . Then there exists u with

Λd
′

i (x̂t,i)u > 0, Γj(x̂t,j)u < 0 (4.29)

for all i ∈ X ′
t and j ∈ Y ′

t . If conditions (i) and (ii) hold, then Pr(xt ∈ C, 0 ≤ t ≤ T) ≥
(1− ϵ)

∏d′

d=0(
ĥd(x0)
ζd

)e−ζ
dT and Pr(τ(G) <∞) > 1− ϵ for any fault pattern r ∈ {r1, . . . , rm},

where τ(G) is the first time when xt reaches G.

Proof. Suppose there exists relative degree d′. By the argument of Theorem 4.4, i ∈ Xd′
t (δ)

implies that Ωi is a constraint on ut at time t. An analogous argument yields that Υi is a
constraint as well. By selecting ut satisfying (4.29) at each time t, we have that Pr(xt ∈
C, 0 ≤ t ≤ T) ≥ (1− ϵ)

∏d′

d=0(
ĥd(x0)
ζd

)e−ζ
dT by Theorem 4.4 and Pr(τ(V +Mγk) <∞) > 1− ϵ

by Lemma 4.4. Hence Pr(τ(G) <∞) > 1− ϵ by assumption (i) of the theorem.

A controller that reaches a goal set defined by a function V while satisfying a safety constraint
C = {x : h(x) ≥ 0} can be obtained by solving the optimization problem

minimize uTt Rut

s.t. Λd
′
i (x̂t,j)ut ≥ ωd

′
j ∀j ∈ Xd′

t (δ) (HOSCBF)
Γi(x̂t,i)ut ≤ τ i ∀i ∈ Yt(V) (CLF)

(4.30)

119

at each time step, where R is a positive definite matrix representing the cost of exerting
control.

4.4.2 HOSCBF-CLF Construction

As in the case of a single HOSCBF constraint, satisfaction of (4.29) will depend on the
geometry of the safe region and goal set as well as the values of γi and θij. We consider a
linear system with dynamics

dxt = (Fxt +Gut) dt+ σdWt. (4.31)

The goal set is ellipsoidal, so that w(x) = V (x) = (x− x′′)TΨ(x− x′′), and the safe region C
is given by a hyperplane constraint aTx− b ≥ 0. We next construct SCBF-CLF as a special
case of HOSCBF-CLF to ensure safety and stability of the cases where rank(G) = n and
rank(G) < n.

Proposition 4.6. Suppose that rank(G) = n and the following conditions hold:

aTx′′ − b >0 (4.32){
(x− x′′)TΨ(x− x′′) ≤ θ

2
λ

2

}
∩ {aTx− b ≤ 0} =∅ (4.33)

Then there exists δ > 0 such that, at each time t, there exists u satisfying (4.29) when
V = θ

2
λ(Φ)
2

.

Proof. Select δ such that δ < aTx′′. We consider three cases. In the first case, Xt(δ) ̸= ∅ and
Yt(V) = ∅. In the second case, Xt(δ) = ∅ and Yt(V) ̸= ∅. In the third case, Xt(δ) ̸= ∅ and
Yt(V) ̸= ∅.

If Xt(δ) ̸= ∅ and Yt(V) = ∅, then u satisfying aTGu > 0 suffices to ensure safety by Lemma
1 in [56]. If Yt(V) ̸= ∅ and Xt(δ) = ∅, then choose u such that Gu = −(x̂t,i − x′′) for some
i ∈ Yt(V). By Proposition 1 in [56], for any positive definite matrix Φ and x′ ∈ Rn if

||x̂t,i − x̂t,j||2 ≤ θ ≤ λ(Φ)−1/2
√
2

120

and x̂t,i and x̂t,j both satisfy (x− x′)TΦ(x− x′) > (1− ϵ) for ϵ sufficiently small, then

(x̂t,i − x′)TΦ(x̂t,j − x′) > 0.

Choosing Φ = 1

2θ
2Ψ and x′ = x′′ yields λ(Φ) = 1

2θ
2 , and hence θ ≤ λ(Φ)−1/2

√
2 holds by

construction. Hence we have

(x̂t,i − x′′)T
(

1

2θ
2
λ
Ψ

)
(x̂t,j − x′′) > 0

when x̂t,i and x̂t,j satisfy

(x− x′′)T
(

1

2θ
2
λ
Ψ

)
(x− x′′) ≥ 1,

or equivalently, when they satisfy

(x− x′′)TΨ(x− x′′) ≥ θ
2
λ

2
.

Finally, suppose that Yt(V) ̸= ∅ and Xt(δ) ̸= ∅. Choosing u such that Gu = −(x̂t,i − x′′) for
some i ∈ Yt(V). By the preceding discussion, (4.29) holds for all j ∈ Yt(V). By choice of δ,
i ∈ Xt(δ) implies that aT x̂t,i < aTx′′. Hence, we have

aTGu = aT (x′′ − x̂t,i) > 0,

and therefore Λ(x̂t,i)ut < 0 is satisfied for all i ∈ X ′
t.

We next turn to the case where rank(G) < n. As in the case of the SCBF construction in [56],
we add a hyperplane constraint (x− x′′)TΨv < 0 to ensure that the SCBF-CLF constraints
are satisfied.

Proposition 4.7. Suppose that v ∈ span(G) and satisfies the following conditions: (i)
aTv > 0, and (ii) the initial state x′ satisfies (x′− x′′)TΨv < 0. Then there exists u satisfying
(4.29) at each time t.

Proof. At each time t, choose Gu = v. We need to verify both SCBF constraints and the CLF
constraint for each i. First, for the constraint h(x) = aTx− b > 0, we must have −aTGu < 0,

121

which is equivalent to assumption (i) of the proposition. For the constraint (x−x′′)TΨGu < 0,
the choice of v = Gu and the hyperplane constraint (x− x′′)TΨv < 0 implies that the CLF
constraint is satisfied. Finally, the hyperplane constraint (x− x′′)TΨv < 0 can be satisfied if
−vTΨGu < 0, or equivalently, if −vTΨv < 0, which holds since Ψ is positive definite.

4.4.3 FT-CBF Evaluation

-0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4

[x]
1

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

0.25

[x
] 2

Comparison of estimations under attack

Unsafe Region

(a)

0 20 40 60 80 100 120 140

Time steps

0

100

200

300

400

500

600

700

V
(x

)

Comparison of Lyapunov function under attack

Baseline Enters

 Unsafe Region

(b)

Figure 4.2: Comparison of actual trajectory and Lyapunov function between HOSCBF-CLF
and baseline on WMR system under sensor false data injection attacks. In (a), the baseline
entered unsafe region while proposed method remains safe and converge to goal region. In
(b), the Lyapunov function of real states decreases and converges to zero.

In this section, we present a case study of a wheeled mobile robot under sensor faults. We
first describe the system models then then present the results.

We consider a wheeled mobile robot (WMR) with dynamics[ẋt]1

[ẋt]2

θ̇t

 =

cos θt 0

sin θt 0

0 1

([ωt]1
[ωt]2

)
+wt (4.34)

where ([xt]1, [xt]2, θt)
T is the vector of the horizontal, vertical, and orientation coordinates

for the wheeled mobile robot, ([ωt]1, [ωt]2)T (the linear velocity of the robot and the angular
velocity around the vertical axis) is taken as the control input, and wt is the process noise.
The feedback linearization [130] is utilized to transform the original state vector and the
WMR model into the new state variable xt = ([xt]1, [xt]2, [ẋt]1, [ẋt]2)

T with control input

122

ut = ([ut]1, [ut]2)
T and the controllable linearized model defined as follow.

ẋt = Fxt +Gut +w′
t (4.35)

where the process noise w′
t ∈ R4 has distribution N (0, σwI), where σw = 0.05. The matrices

F and G are defined as

F =


0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

 , G =


0 0

0 0

1 0

0 1

 .

The following compensator is used to calculate the input [ωt]1 and [ωt]2 into (4.34)

[ωt]1 =

∫ t+

t−
[ut]1 cos θt + [ut]2 sin θt dt (4.36)

[ωt]2 = ([ut]2 cos θt − [ut]1 sin θt)/[ωt]1. (4.37)

Here we assume that the observation for the orientation coordinate θt is attack-free and
noise-free, which enables feedback linearization based on the variable θt.

In the linearized model, we use the observation equation

[yt]1

[yt]2

[yt]3

[yt]4

[yt]5

[yt]6


=



1 0 0 0

1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1




[xt]1

[xt]2

[ẋt]1

[ẋt]2

+ at + vt (4.38)

where the measurement noise vt ∈ R6 has distribution N (0, σvI), where σv = 0.05. The
impact of the attack is denoted as at. The attack signal satisfies that

at =

0, t < 1

[0, 0, 0, 2, 0, 0]T , t ≥ 1

123

Note that there is one redundant sensor for the horizontal coordinate and one for the vertical
coordinate.

Here we let the safe region C = {xt : h(xt) = [xt]2 + 0.1 ≥ 0, t ≥ 0} and the goal region
G = {xt : ω(xt) = d− ||xt − xg||2 ≥ 0}, where xg is (0, 0) and d = 0.05 is the radius of the
goal region. The baseline utilizes a fault detection scheme [112, Chapter 7.3] to detect and
identify sensor faults by comparing EKF residuals against the threshold 0.1 and recomputes
control input with an LQR controller. We then compare with our proposed HOCBF-based
and CLF-based method. To keep the system remaining within safe region, we systematically
construct the FT-SCBF with relative degree 1 by using the following class of sets

C(0) = {x | h0(xt) = aTxt + b ≥ 0,∀t ≥ 0}

C(1) = {x | h1(xt) = aTFxt + aTxt + b ≥ 0,∀t ≥ 0},

where aT = [0, 1, 0, 0] and bT = [0, 0.1, 0, 0]. This differs from our previous work [56] which
solves the problem by manually tuning the parameters and constructing the CBFs for high
relative degree. In order to reach the goal region without violating the safety constraint, we
choose the CLF

V (x) = (xt − xg)TPd(xt − xg) (4.39)

where Pd =

(
1
d
I 0

0 I

)
PL

(
1
d
I 0

0 I

)
, PL is the solution of the Lyapunov equation F TPL+PLF =

−I, and I is the identity matrix [131], [132]. We set ρ = 0.2, η = 0.8 and M = 2 in the CLF
constraint. The control input ut is computed at each time step by solving (4.30) with R = I.

Simulation Result: The results are shown in Fig. 4.2. In Fig. 4.2(a), we plot the first two
dimensions of the state, which describe the horizontal and vertical coordinates. Note that
the robot stays in the safe region and eventually reaches the goal region, and hence satisfies
safety and stability. As a comparison, the baseline can identify sensor faults but still resulted
in a safety violation due to the slow response time of residual-based diagnosis.

4.5 Fault Tolerant NCBF

In this section, we study the problem of safety-critical control of robotic systems under sensor
faults and attacks.

124

We consider the presence of an adversary, who can inject an arbitrary attack signal, denoted
as at ∈ Rq, to manipulate the output at each time t. The adversary aims to force the robot
leaves the safety region C. The attack signal is constrained by supp(at) ⊆ F(r), where
r ∈ {r1, . . . , rm} is the index of possible faults or attacks, m is the total number of possible
attack patterns, and F(r) ⊆ {1, . . . , q} denotes the set of potentially compromised sensors
under attack pattern r. Hence, if attack pattern r occurs, then the outputs of any of the
sensors in F(ri) can be arbitrarily modified. We consider that the set of possible faults or
attacks is known, but the exact attack pattern that has occurred is unknown to the controller.
In this section, we assume that the system satisfies Assumption 4.2. We state the problem
studied in this section as follows.

Problem 4.1. Given a safety region C defined in Eq. (4.3) and a parameter ϵ ∈ (0, 1),
construct a control policy µ such that, for any attack pattern r ∈ {r1, . . . , rm}, the probability
Pr(xt ∈ C ∀t) ≥ (1− ϵ) when attack pattern r occurs.

In what follows, we first present an overview of our solution to safety-critical control synthesis
for the robot in Eq. (4.1)-(4.2) such that safety can be guaranteed under sensor faults and
attacks. The key to our approach is the development of a new class of control barrier functions
named fault tolerant neural control barrier functions (FT-NCBFs).

4.5.1 Overview of Proposed Solution

This subsection presents our proposed solution approach to safety-critical control synthesis.
Since the attack pattern is unknown, we maintain a set of m EKFs, where each EKF uses
measurements from {1, . . . , q} \ F(ri) for each i ∈ {1, . . . ,m}. We denote the state estimates
and Kalman gain obtained using {1, . . . , q} \ F(ri) as x̂t,i and Kt,i, respectively. If there
exists a function bθ parameterized by θ such that Dθ = {x̂|bθ(x̂) ≥ 0} ⊆ C, then Theorem 4.2
indicates that any control input u within the feasible region

Ωi = {u :
∂bθ
∂x

f(x̂t,i) +
∂bθ
∂x

g(x̂t,i)u− γi∥
∂bθ
∂x

(x̂)Kt,ici∥2

+
1

2
tr

(
νTi K

T
t,i

∂2bθ
∂x2

(x̂t,i)Kt,iνi

)
+ b̂γiθ (x̂t,i) ≥ 0},

125

guarantees safety under attack pattern ri, where ci is obtained by removing rows corresponding
to F(ri) from matrix c, b̂γiθ (x̂) = bθ(x̂)− b̄γiθ (x̂), and

b
γi
θ = sup

x̂,x̂0

{
bθ(x̂) : ||x̂− x̂0||2 ≤ γi and bθ(x̂0) = 0

}
.

If there exists a control input u ∈ ∩mi=1Ωi ̸= ∅, such a control input can guarantee the safety
under any attack pattern ri.

We note that the existence of a control input u satisfying the constraints specified by
Ω1, . . . ,Ωm simultaneously may not be guaranteed because sensor faults and attacks can
significantly bias the state estimates. Thus we develop a mechanism to identify constraints
conflicting with each other, and resolve such conflicts. Our idea is to additionally maintain

(
m
2

)
EKFs, where each EKF computes state estimates using sensors from {1, . . . , q}\(F(ri)∪F(rj))
for all i ̸= j. We use a variable Zt to keep track of the attack patterns that will not raise
conflicts. The variable Zt is initialized as {1, . . . ,m}. If ∩i∈ZtΩi = ∅, we compare state
estimates x̂t,i with x̂t,j for all i, j ∈ Zt and i ≠ j. If ∥x̂t,i − x̂t,j∥2 ≥ αij for some chosen
parameter αij > 0, then Zt is updated as

Zt =

Zt \ {i}, if ∥x̂t,i − x̂t,i,j∥2 ≥ αij/2

Zt \ {j}, if ∥x̂t,j − x̂t,i,j∥2 ≥ αij/2
.

After updating Zt, if ∩i∈ZtΩi ̸= ∅, then control input ut can be chosen as

min
ut∈∩i∈ZtΩi

uTt ut. (4.40)

Otherwise, we will remove indices i corresponding to attack pattern ri causing largest residue
yt,i − cix̂t,i until ∩i∈ZtΩi ̸= ∅. Here yt,i is the output from sensors in {1, . . . , q} \ F(ri).

The positive invariance of set Dθ using the procedure described above is established in the
following theorem.

Theorem 4.1 ([56]). Suppose γ1, . . . , γm, and αij for i < j are chosen such that the following
conditions are satisfied:

126

1. Define Λi(x̂t,i) =
∂bθ
∂x
g(x̂t,i). There exists δ > 0 such that for any X ′

t ⊆ Xt(δ) := {i |
b̂γiθ (x̂t,i) < δ} satisfying ||x̂t,i − x̂t,j||2 ≤ αij for all i, j ∈ X ′

t, there exists u such that

Λi(x̂t,i)u > −
∂bθ
∂x

f(x̂t,i) + γi∥
∂bθ
∂x

(x̂t,i)Kt,ici∥2

− 1

2
tr

(
νTi K

T
t,i

∂2bθ
∂x2

(x̂)Kt,iνi

)
− b̂γiθ (x̂t,i) (4.41)

for all i ∈ X ′
t.

2. For each i, when r = ri,

Pr(∥x̂t,i − x̂t,i,j∥2 ≤ αij/2 ∀j, ∥x̂t,i − xt∥2 ≤ γi ∀t) ≥ 1− ϵ. (4.42)

Then Pr(xt ∈ Dθ ∀t) ≥ 1− ϵ for any r ∈ {r1, . . . , rm}.

Based on Theorem 4.1, we note that the key to our solution approach is to find the function
bθ. We name the function bθ as fault tolerant neural control barrier function (FT-NCBF),
whose definition is given as below.

Definition 4.1. A function bθ parameterized by θ is a fault tolerant neural control barrier
function for the robot in Eq. (4.1)-(4.2) if it there exists a control input u satisfying Eq.
(4.41) under the conditions in Theorem 4.1.

Solving Problem 4.1 hinges on the task of synthesizing an FT-NCBF for the robot in (4.1)-
(4.2), which will be our focus in the remainder of this section. Specifically, we first investigate
how to synthesize NCBFs when there exists no adversary (Section 4.5.2). We then use the
NCBFs as a building block, and present how to synthesize FT-NCBFs. We construct a
loss function to learn FT-NCBFs in Section 4.5.3. We establish the safety guarantee of our
approach in Section 4.5.4.

4.5.2 Synthesis of NCBF

In this subsection, we describe how to synthesize NCBFs. We first present the necessary and
sufficient conditions for stochastic control barrier functions, among which NCBFs constitute a

127

special class represented by neural networks. Suppose Assumption 4.1 holds. By Proposition
4.2, the function b(x̂) is a stochastic control barrier function if and only if there is no
x̂ ∈ Dγ := {x̂ | b̂(x̂) ≥ 0}, satisfying ∂b

∂x
g(x̂) = 0 and ξγ(x̂) < 0, (4.19).

We note that the class of NCBFs is a special subset of stochastic control barrier functions.
We denote the NCBF as bθ(x̂), where θ is the parameter of the neural network representing
the function.

In the following, we introduce the concept of valid NCBFs, and present how to synthesize
them. A valid NCBF needs to satisfy the following two properties.

Definition 4.2 (Correct NCBFs). Given a safety region C, the NCBF bθ is correct if and
only if Dθ ⊆ C.

The correctness property requires the NCBF bθ to induce a set Dθ ⊆ C. If Dθ is positive
invariant, then C is also positive invariant, ensuring the robot to be safe with respect to C.
We next give the second property of valid NCBFs.

Definition 4.3 (Feasible NCBF). The NCBF bθ parameterized by θ is feasible if and only if
∀x̂ ∈ Dγθ := {x̂|b̂γθ (x̂) ≥ 0}, there exists u such that ξγθ (x̂) +

∂bθ
∂x
g(x̂)u ≥ 0, where

ξγθ (x̂) =
∂bθ
∂x

f(x̂) +
1

2
tr

(
νTKT

t

∂2bθ
∂x2

(x̂)Ktν

)
− γ∥∂bθ

∂x
(x̂)Ktc∥2 + b̂γθ (x̂). (4.43)

The feasibility property in Definition 4.3 ensures that a control input u can always be found
to satisfy the inequality (4.5), and hence can guarantee safety.

We note that there may exist infinitely many valid NCBFs. In this section, we focus on
synthesizing valid NCBFs that encompass the largest possible safety region. To this end,
we define an operator V ol(Dθ) to represent the volume of the set Dθ, and synthesize a valid
NCBF such that V ol(Dθ) is maximized. The optimization program is given as follows

max
θ

V ol(Dθ) (4.44)

s.t. ξγθ (x̂) ≥ 0 ∀x̂ ∈ ∂Dγθ (4.45)

bθ(x̂) ≤ h(x̂) ∀x̂ ∈ X\Dθ (4.46)

128

where ∂Dγθ represents the boundary of set Dγθ . Here constraints (4.45) and (4.46) require
parameter θ to define feasible and correct NCBFs, respectively. Solving the constrained
optimization problem is challenging. In this section, we convert the constrained optimization
to an unconstrained one by constructing a loss function which penalizes violations of the
constraints. We then minimize the loss function over a training dataset to learn parameters θ
and thus NCBF bθ.

We denote the training dataset as T := {x̂1, . . . , x̂N | x̂i ∈ X , ∀i = 1, . . . , N}, where N is the
number of samples. The dataset T is generated by simulating estimates with fixed point
sampling as in [16]. We first uniformly discretize the state space into cells with length vector
L. Next, we uniformly sample the center of discretized cell as fixed points xf . Then we
simulate the estimates by introducing a perturbation ρ[j] sampled uniformly from interval
[xf [j]− 0.5L[j], xf [j] + 0.5L[j]]. Finally, we have the sampling data x̂i = xf + ρ ∈ T ⊆ X .

We then formulate the following unconstrained optimization problem to search for θ

min
θ

−V ol(Dθ) + λfLf (T) + λcLc(T) (4.47)

where Lf(T) is the loss penalizing the violations of constraint (4.45), Lc(T) penalizes the
violations of constraint (4.46), and λf and λc are non-negative coefficients. The objective
function (4.44) is approximated by the following quantity

V ol(Dθ) =
∑
x̂∈T

−ReLU(h(x̂))ReLU(−bθ(x̂)). (4.48)

Eq. (4.48) penalizes the samples x̂ in the safety region but not in Dθ, i.e., h(x̂) > 0 and
bθ(x̂) < 0. The penalty of violating the feasibility property in Eq. (4.45) is defined as

Lf (T) =
∑
x̂∈T

−∆(x̂)ReLU(−ξγθ (x̂)−
∂bθ
∂x

g(x̂)u+ b̂γθ (x̂)),

where ∆(x̂) is an indicator function such that ∆(x̂) := 1 if bθ(x̂) = b
γ

θ and ∆(x̂) := 0 otherwise.
The function ∆ allows us to find and penalize sample points x̂ satisfying b̂γθ(x̂) = 0 and
ξγθ (x̂) +

∂bθ
∂x
g(x̂)u < 0. For each sample x̂ ∈ T , the control input u in Lf is computed as

129

follows

min
u

uTu

s.t. ξγθ (x̂) +
∂bθ
∂x

g(x̂)u ≥ 0
(4.49)

The loss function to penalize the violations of the correctness property in Eq. (4.46) is
constructed as

Lc(T) =
∑
x̂∈T

ReLU(−h(x̂))ReLU(bθ(x̂)) (4.50)

Eq. (4.50) penalizes x̂ outside the safety region but being regarded safe, i.e., h(x̂) < 0 and
bθ(x̂) > 0. When Lc(T) and Lf (T) converge to 0, constraints (4.45)-(4.46) are satisfied.

4.5.3 Synthesis of FT-NCBF

In Section 4.5.2, we presented the training of NCBFs when there exists no adversary. In this
subsection, we generalize the construction of the loss function in Eq. (4.47), and present
how to train a valid FT-NCBF for robotic systems in Eq. (4.1)-(4.2) under unknown attack
patterns. With a slight abuse of notations, we use bθ to denote the FT-NCBF in the remainder
of this section. We define b̂γiθ (x̂) = bθ(x̂)− b̄γiθ (x̂), where

b
γi
θ = sup

x̂,x̂0

{
bθ(x̂) : ||x̂− x̂0||2 ≤ γi and bθ(x̂0) = 0

}
.

The following proposition gives the necessary and sufficient conditions for a function bθ to be
an FT-NCBF.

Proposition 4.8. Suppose Assumption 4.1 holds. The function bθ(x̂) is an FT-NCBF if and
only if there is no x̂t,i ∈ Dγiθ , satisfying ∂bθ

∂x
g(x̂t,i) = 0 , ξγiθ (x̂t,i) < 0 for all i ∈ {1, . . . ,m}

where

ξγiθ (x̂t,i) =
∂bθ
∂x

f(x̂t,i) +
1

2
tr

(
νTi K

T
t,i

∂2bθ
∂x2

(x̂)Kt,iνi

)
− γi∥

∂bθ
∂x

(x̂t,i)Kt,ici∥2 + b̂γiθ (x̂t,i). (4.51)

130

The proposition can be proved using the similar idea to Proposition 4.2. We omit the proof
due to space constraint.

We construct the loss function below to learn FT-NCBFs

min
θ

−V ol(Dθ) + λf
∑

i∈{1,...,m}

Lif (T) + λcLc(T), (4.52)

where Lf (T) =
∑

i∈{1,...,m} Lif (T) is the penalty of violating the feasibility property,

Lif (T) =
∑
x̂∈T

−∆i(x̂)ReLU(−ξγiθ (x̂)−
∂bθ
∂x

g(x̂)u+ b̂γiθ (x̂)),

and ∆(x̂) is an indicator function such that ∆(x̂) := 1 if bθ(x̂) ≤ maxi∈Zt {b
γi
θ } and ∆(x̂) := 0

otherwise. The control input u used to compute Lif(T) for each sample x̂ is calculated as
follows.

min
u

uTu

s.t. ξγiθ (x̂) +
∂bθ
∂x

g(x̂)u ≥ 0 ∀i ∈ {1, . . . ,m}
(4.53)

If Lc(T) and Lf (T) converge to 0, bθ is a valid FT-NCBF.

4.5.4 Safety Guarantee of Proposed Approach

In this subsection, we establish the safety guarantee of our approach for the robot in Eq.
(4.1)-(4.2). First, we note that Theorem 4.1 establishes the positive invariance of set Dθ.
However, the theorem depends on the existence of ut. The following proposition provides the
sufficient condition of the existence of ut for all x̂ ∈ Dγiθ , ∀i ∈ Zt.

Proposition 4.9. Suppose that the interval length L used to sample the training dataset T
satisfies L ≤ s and s→ 0. If an FT-NCBF bθ satisfies Lf (T) +Lc(T) = 0, then there always
exists ut such that ∂bθ

∂x
g(x̂)ut + ξγiθ (x̂) ≥ 0 ∀x̂ ∈ Dγiθ , ∀i ∈ Zt.

Proof. By the constructions of Lif and Lc, these losses are non-negative. Thus if Lf(T) +
Lc(T) = 0, we have Lif(T) = Lf(T) = Lc = 0. According to the definitions of Lf and Lif
as well as the conditions that L ≤ s and s → 0, we then have that there must exist some

131

control input u that solves the optimization program in Eq. (4.53) for all x̂ ∈ Dγiθ when
Lif (T) + Lf (T) = 0. Otherwise losses Lif and Lf will be positive.

We finally present the safety guarantee of our approach.

Theorem 4.2. Suppose that the interval length L used to sample the training dataset T
satisfies L ≤ s and s→ 0. Let bθ be an FT-NCBF satisfying Lf(T) + Lc(T) = 0. Suppose
γ1, . . . , γm, and αij for i < j are chosen such that the conditions in Theorem 4.1 hold. Then
Pr(xt ∈ C ∀t) ≥ 1− ϵ for any attack pattern r ∈ {r1, . . . , rm}.

Proof. The theorem follows from Theorem 4.1, Proposition 4.9, and the correctness property
that Dθ ⊆ C.

4.5.5 FT-NCBF Evaluation

(a)

Unsafe Region Zero-level Set

(b)

Baseline
Proposed Approach
Unsafe Region

(c)

Figure 4.3: This figure presents the experimental results on obstacle avoidance of an au-
tonomous mobile robot. Fig. 4.3a presents the values of loss function, Lf(T), and Lc(T).
The loss function decreases towards zero during the training process. Fig. 4.3b shows the
zero-level set of Dθ corresponding to the FT-NCBF bθ. The set Dθ does not overlap with the
unsafe region in red color. Fig. 4.3c presents the trajectory of the mobile robot when using
control policies obtained by our approach and the baseline approach. We observe that our
approach guarantees safety whereas the baseline crashes with the pedestrian.

We evaluate our proposed approach using two case studies, namely the obstacle avoidance
of an autonomous mobile robot [97] and the spacecraft rendezvous problem [99]. Both case
studies are conducted on a laptop with an AMD Ryzen 5800H CPU and 32GB RAM. The
hyper-parameters in both studies can be found in our code.

132

(a)

Unsafe Region Zero-level Set

(b) (c)

Figure 4.4: This figure presents the experimental results on spacecraft rendezvous problem.
In Fig. 4.4a, we demonstrate that the value of loss function in Eq. (4.47) quickly converges
to zero during training. Fig. 4.4b presents the zero-level set of Dθ, which never overlaps with
the unsafe region in red color. Fig. 4.4c simulates the trajectories of the chaser satellite using
our approach and the baseline. We observe that our approach allows the chaser satellite to
maintain a proper distance to the target satellite (green curve), whereas the baseline fails
(red curve).

Obstacle Avoidance Problem of Mobile Robot

We consider an autonomous mobile robot navigating on a road following the dynamics [98]
given below

ẋ = f(x) + g(x)u,

where x := [x1, x2, ψ]
T ∈ X ⊆ R3 is the state consisting of the location (x1, x2) of the robot and

its orientation ψ, u is the input that controls the robot’s orientation, f(x) = [sinψ, cosψ, 0]T ,
and g(x) = [0, 0, 1]T .

The mobile robot is required to stay in the road while avoid pedestrians sharing the field of
activities. We set the location of the pedestrian as (0, 0). Then the safety region is formulated
as C = {x ∈ X : x21 + x22 ≥ 0.04, and x2 ≥ −0.3}, where X = [−2, 2]3. We consider that one
IMU and two GNSS sensors are mounted on the mobile robot. These sensors jointly yield the
output model y = [x1, x1, x2, x2, ψ]

T + ν, where the measurement noise ν ∼ N (0, σI5) ∈ R5,
σ = 0.001, and I5 is the five-dimensional identity matrix. There exists an adversary who can
spoof the readings from one GNSS sensor, leading to two possible attack patterns, {r1, r2}.
The compromised sensors associated with attack patterns r1 and r2 are the second or fourth
dimension of y, denoted as y[2] and y[4], respectively.

133

We compare our approach with a baseline which adopts the method from [16] and learns an
NCBF ignoring the presence of sensor faults and attacks. The baseline computes the control
input by solving minu∈Ω̄ u

Tu, where Ω̄ is the feasible region specified by the learned NCBF.

When applying our approach, we first sample the training dataset T with L = 0.125, making
|T | = 323. Given the training dataset T , we learn an FT-NCBF using Eq. (4.52) with
γ1 = 0.002 and γ2 = 0.0015. The training process took about 604 seconds. The values of
loss function, Lf(T), and Lc(T) at each epoch during training are presented in Fig. 4.3a.
We observe that the loss function decreases towards zero during the training process. In
particular, Lf(T) + Lc(T) → 0 as we train more epochs. By the construction of the loss
function, it indicates that our approach finds a valid FT-NCBF. The positive invariant set
Dθ induced by the learned FT-NCBF is shown in Fig. 4.3b. We observe that the zero-level
set ∂Dθ in yellow color stays close to the boundary of the safety region, while it does not
overlap with the unsafe region in red color. We implement the control policy calculated using
our approach and simulate the trajectory of the mobile robot using CARLA [63]. In Fig.
4.3c, we observe that our proposed approach with parameter α12 = 0.1 avoids any contact
with the pedestrian while remain in the road (green color curve) and thus is safe, whereas
the baseline approach (red color curve) crashes with the pedestrian and hence fails. A video
clip of our simulation is available as the supplement.

Spacecraft Rendezvous Problem

We demonstrate the proposed approach using the spacecraft rendezvous between a chaser and
a target satellite. We follow the setting in [99], and represent the dynamics of the satellites
using the linearized Clohessy–Wiltshire–Hill equations as follows

ẋ =


03 I3

3n2 0 0 0 2n 0

0 0 0 −2n 0 0

0 0 −n2 0 0 0

x+
[
03

I3

]
u

where x = [px, py, pz, vx, vy, vz]
T is the state of the chaser satellite, u = [ux, uy, uz]

T is the
control input representing the chaser’s acceleration, and n = 0.056 represents the mean-motion
of the target satellite.

134

We define the state space and safety region as X = [−2, 2]6 and C = {x : r ∈ [0.25, 1.5], r =√
p2x + p2y + p2z}, respectively. The chaser satellite is required to maintain a safe distance

from the target satellite as a safety constraint. The chaser satellite is equipped with a set
of sensors to obtain the output y = [px, px, py, py, py, vx, vy, vz]

T + ν, where ν ∼ N (0,Σ) and
Σ = 10−5 ×Diag([100, 100, 100, 1, 1, 1, 1, 1]). We consider two fault patterns {r1, r2}, where
r1 and r2 are associated with compromised measurements from y[2] and y[4], respectively,
raised by a perturbation a ∼ N (−1, 0.1).

We evaluate our approach by comparing with the same baseline approach in Section 4.5.5.
We sample from state space X using L = 1 and obtain a training dataset with |T | = 4096.
The training of FT-NCBF took about 1411 seconds with the loss Lf (T), and Lc(T) shown
in Fig. 4.4a. We observe that the loss Lf(T) and Lc(T) quickly converge to 0, and thus
the learned FT-NCBF is valid. We visualize the FT-NCBF bθ in Fig. 4.4b. We synthesize
a control policy using bθ in Eq. (4.40). We observe in Fig. 4.4c that the chaser satellite
never leaves the safety region using the control policy obtained by our approach, whereas the
baseline fails to maintain a proper distance from the target satellite, leading to failures in the
docking operation.

4.6 Conclusion

This chapter proposed a new class of SCBFs with high relative degree for safety and stability
of control systems under sensor faults and attacks. Our approach maintains a set of state
estimators, excludes outlier estimates and ensures safety with a CBF-based approach. We
then constructed an SCBF with high order degree for each state estimator, which guaranteed
safety provided that a linear constraint on the control input was satisfied at each time step.
We proposed a scheme for using additional state estimators to resolve conflicts between
these constraints, and derived a scheme to verify the feasibility of SCBFs. We then showed
how to compose our proposed HOSCBFs with CLFs to provide joint guarantees on safety
and stability of a desired goal set under sensor faults and attacks. The proposed FT-CBF
against sensor faults was validated on a wheeled mobile robot. We proposed FT-NCBFs and
studied the synthesis of FT-NCBFs by first deriving the necessary and sufficient conditions
for FT-NCBFs to guarantee safety. We then developed a data-driven method to learn FT-
NCBFs by minimizing a loss function which penalizes the violations of our derived conditions.

135

We demonstrated FTNCBF using the obstacle avoidance of a mobile robot and spacecraft
rendezvous.

136

Chapter 5

Resilient Safe Control under LiDAR
Perception Attacks

Autonomous Cyber-Physical Systems (CPS) fuse proprioceptive sensors such as GPS and
exteroceptive sensors including Light Detection and Ranging (LiDAR) and cameras for state
estimation and environmental observation. In real-world applications, system states and the
environment are measured by sensors. As the environment becomes increasingly complex,
modern CPS utilize exteroceptive sensors including Light Detection and Ranging (LiDAR)
and cameras to obtain richer perception of the operating space [133]. Fusion among the
exteroceptive sensors and proprioceptive sensors such as GPS and odometer allows CPS to
better understand the environment [134] and ensure safe operation.

LiDARs, which measure the distances from the LiDAR transceiver to obstacles, provide 360◦

view and 3D representation, namely point cloud, of the environment rather than a 2D image
as from a camera, and thus are crucial sensors for perception in autonomous vehicles (AVs).
However, LiDAR sensors have been demonstrated to be vulnerable to spoofing attacks in
[59]. Machine learning-based LiDAR detection was also shown to be vulnerable in [135].
LiDAR spoofing attacks focus on falsifying non-existing obstacles or hiding existing obstacles.
Spoofing attacks that aim to create non-existing obstacles mainly use relay attack [57], in
which an adversary fires laser to the LiDAR measurement unit with the same wavelength to
inject false points. To hide an object from being detected by LiDAR sensor, methods include
adversarial objects [60] and physical removal attacks [58]. Adversarial objects are synthesized
such that deep neural network based detection modules fail to detect in a certain range of
distance and angle. Physical removal attacks hide arbitrary objects, such as pedestrians, by
relay attacks.

Modeling and detection of sensor faults and attacks have been extensively studied [50, 51, 52].
Secure system state estimation using measurements from proprioceptive sensors has been

137

investigated in [53, 54]. Closed-loop safety-critical control under sensor faults and attacks has
been recently studied in [55, 56]. However, these approaches are applicable to CPS using only
proprioceptive sensors. When exteroceptive sensors such as LiDAR are adopted by CPS, the
impact of attacks on the output of the nonlinear filters used to process LiDAR measurements
are not incorporated into the aforementioned safety-critical control designs [55, 56], rendering
them less effective. Safety-critical control under LiDAR spoofing attacks is an open problem.
To address the problem, we make the following contributions.

• We propose a fault tolerant state estimation algorithm that is resilient to attacks against
proprioceptive sensors and 2D-LiDAR measurements. Our approach reconstructs a
simulated scan based on a state estimate and a precomputed map of the environment.
We leverage this reconstruction to remove false sensor inputs as well as detect and
remove spoofed LiDAR measurements.

• We propose a fault tolerant safe control design using control barrier certificates. We
present a sum-of-squares program to compute a control barrier certificate, which verifies
a given safety constraint in the presence of estimation errors due to noise and attacks.
We prove bounds on the probability that our synthesized control input guarantees
safety.

• We validate our proposed framework using a UAV delivery system equipped with
multiple sensors including a 2D-LiDAR. We show that the UAV successfully avoids the
obstacles when navigating in an urban environment using our synthesized control law,
while crashes into the unsafe region using a baseline.

• We propose a safe control system for 3D-LiDAR-perception-based AVs based on the
point cloud from neighboring vehicles. In the proposed system, a Fault Detection,
Identification, and Isolation (FDII) module detects and classifies the attacks, and
updates the unsafe region for the vehicle. A safe controller guarantees the safety of the
system based on the updated unsafe region.

• We analyze the correctness of the results from the FDII module. We show that the
FDII module can detect and classify attacks correctly, and output the unsafe region
containing the projection of the obstacles.

• Our results are validated through CARLA, in which we show that the proposed FDII
procedure correctly detects multiple attack types and reconstructs the true unsafe

138

region. We then show that, under our control algorithm, the vehicle reaches the given
target while avoiding an obstacle.

The remainder of this chapter is organized as follows. Section 5.1 presents the related work.
Section 5.2 presents safety-critical control of a 2D-LiDAR-based system under sensor faults
and attacks. Section 5.3 presents a fault detection, identification, isolation approach for
3D-LiDAR-based system and conduct verifiable safe control under 3D-LiDAR spoofing attacks.
Section 5.4 concludes the chapter.

5.1 Related Work

False data injection (FDI) attacks have been reported in different applications, including
modern power systems [51] and unmanned aerial vehicle (UAV) [136]. To this end, modeling,
mitigating, and detecting FDI have been studied in [50, 51, 54, 53, 137]. LiDAR sensors have
been demonstrated to be vulnerable to spoofing attacks in [59, 135]. The authors of [138]
designed attacks that are capable of injecting false points at different locations in the point
cloud. In [139], a stealthy attack against a perception-based controller equipped with an
anomaly detector were proposed.

The existing literature on safe control in the presence of FDI attacks mainly focuses on
systems with proprioceptive sensors. In [55], a barrier certificate based approach is proposed
to ensure safety and reachability under FDI attack. A fault tolerant CBF is introduced in
[56] to ensure joint safety and reachability under attacks targeting proprioceptive sensors. In
[140], the authors have demonstrated that camera and LiDAR fusion is secure against naive
attacks. For systems under attacks targeting both proprioceptive and exteroceptive sensors,
how to synthesize a safety-critical control has been less studied.

LiDAR sensors have been demonstrated to be vulnerable to spoofing attacks in [59]. Machine
learning-based LiDAR detection was also shown to be vulnerable in [135]. LiDAR spoofing
attacks focus on falsifying non-existing obstacles or hiding existing obstacles. Spoofing attacks
that aim to create non-existing obstacles mainly use relay attack [57], in which an adversary
fires laser to the LiDAR measurement unit with the same wavelength to inject false points. To
hide an object from being detected by LiDAR sensor, methods include adversarial objects [60]
and physical removal attacks [58]. Adversarial objects are synthesized such that deep neural

139

network based detection modules fail to detect in a certain range of distance and angle.
Physical removal attacks hide arbitrary objects, such as pedestrians, by relay attacks.

Countermeasures to LiDAR spoofing have been proposed in recent years. Defense approaches
such as random sampling and randomizing waveforms focus on robust perception in a single
sensor scenario. Random sampling proposed in [141] uses robust RANSAC method to
randomly sample features from the point clouds. The approach presented in [142] randomizes
the pulses’ waveforms. However, a shortcoming in practical perception of these approaches
is the increase in cost. RANSAC requires high computational capability to formulate the
momentum model for adversarial detection[141]. The approach presented in [142] introduces
extra modulation components into the lens system and may decrease the sensitivity of
LiDAR[143]. A vehicle system is usually equipped with more than one sensors to estimate
states and observe its surroundings. One cost-efficient method to increase robustness of
estimation in faulty and adversarial environments is to use redundant information. Such
a redundancy-based approach includes sensor fusion [144] and multiple sensor overlapping.
However, existing work on fault-tolerant estimation with multiple sensor overlapping focus
more on the case where an agent is equipped with redundant sensors, but leave the problem
of cooperative robust perception less studied.

5.2 Resilient Safe Control of 2D-LiDAR-based Systems

We study the problem of safety-critical control of a LiDAR-based system under sensor faults
and attacks. We propose a framework consisting of fault tolerant estimation and fault tolerant
control. The former reconstructs a LiDAR scan with state estimations, and excludes the
possible faulty estimations that are not aligned with LiDAR measurements. We also verify
the correctness of LiDAR scans by comparing them with the reconstructed ones and removing
the possibly compromised sector in the scan. Fault tolerant control computes a control signal
with the remaining estimations at each time step. We prove that the synthesized control
input guarantees system safety using control barrier certificates. We validate our proposed
framework using a UAV delivery system in an urban environment. We show that our proposed
approach guarantees safety for the UAV whereas a baseline fails.

140

5.2.1 Preliminaries

Consider a discrete-time control-affine system given as:

x[k + 1] = f(x[k]) + g(x[k])u[k] + w[k] (5.1)

where w[k] is a Gaussian process with mean zero and autocorrelation function Rw(k, k
′) =

Qkδ(k − k′) with δ denoting the discrete-time delta function and Qk is a positive definite
matrix. We assume that there is a nominal controller u = π(x), for some function π : X → Rm.
We let x[k] ∈ X ⊆ Rn denote the system state and u[k] ∈ Rm denote a control signal at time
k. Functions f : Rn → Rn and g : Rn → Rn×m are assumed to be Lipschitz continuous.

System (5.1) uses a set of sensors Ip := {1, . . . , np} to measure its states with observation
y[k] ∈ Rz following the dynamics described as:

y[k] = o(x[k]) + v[k], (5.2)

where o : Rn → Rz is the observation function, v[k] is an independent Gaussian process
with mean identically zero and autocorrelation function Rv[k, k

′] = Rkδ(k − k′) and Rk is
a positive definite matrix. In what follows, we give background on discrete-time Extended
Kalman Filter (EKF) and estimating pose from LiDAR scans

DT-EKF

For the system with dynamics (5.1) and observation (5.2), the state estimate x̂ is computed
via EKF as:

x̂[k + 1] = F (x̂[k], u[k]) +Kk(y[k]− o(x̂[k])), (5.3)

where F (x[k], u[k]) = f(x[k]) + g(x[k])u[k]. The Kalman filter gain is

Kk = AkPkC
T
k (CkPkC

T
k +Rk)

−1, (5.4)

where Ak = ∂F
∂x

(x̂[k], u[k]), Ck = ∂o
∂x
(x̂[k]), and Pk is defined by the Riccati difference equation:

Pk+1 = AkPkA
T
k +Qk −Kk(CkPkC

T
k +Rk)K

T
k .

141

The error bound of discrete-time EKF can be derived by Theorem 3.2 in [145] if Assumption
5.1 holds.

Assumption 5.1. The system described by (5.1) and (5.2) satisfies the conditions:

• Ak is nonsingular for every k ≥ 0.

• There are positive real numbers ā, c̄, p, p̄ > 0 such that the following bounds on various
matrices are fulfilled for every k ≥ 0 :

∥Ak∥ ≤ ā; ∥Ck∥ ≤ c̄; pI ≤ Pk ≤ p̄I;

qI ≤ Qk; rI ≤ Rk.

• Let ϕ and χ be defined as

F (x[k], u[k])− F (x̂[k], u[k]) = Ak(x[k]− x̂[k])

+ φ(x[k], x̂[k], u[k])

o(x[k])− o(x̂[k]) = Ck(x[k]− x̂[k]) + χ(x[k], x̂[k])

Then there are positive real numbers ϵφ, ϵχ, κφ, κχ > 0 such that the nonlinear functions
φ, χ are bounded via

∥φ(x, x̂, u)∥ ≤ κφ∥x− x̂∥2, ∥χ(x, x̂)∥ ≤ κχ∥x− x̂∥2

for x, x̂ ∈ Rn with ∥x− x̂∥ ≤ ϵφ and ∥x− x̂∥ ≤ ϵχ, respectively.

If the conditions of Assumption 1 hold, the estimation error ζk = x[k]− x̂[k] is exponentially
bounded in mean square and bounded with probability one, provided that the initial estimation
error satisfies ∥ζ0∥ ≤ ζ̄ [145].

5.2.2 2D LiDAR Observation and Threat Model

The system is equipped with a LiDAR sensor that observes the environment by calculating the
ranges and angles to objects. A LiDAR sensor fires and collects ns laser beams to construct a
scan S := {(sri , sai), 0 ≤ i ≤ ns}, where sri denotes the range of the i-th scan, and sai denotes

142

the angle of the i-th scan. We denote the Cartesian translated LiDAR scan S measured at
pose x as O(x, S).

We assume a 2D point-cloud mapM is known by the system as prior knowledge. The map
M := {(mx

i ,m
y
i), 0 ≤ i ≤ nM} is a collection of nM points with tuples of object positions

(mx
i ,m

y
i) in the world coordinate.

We assume that there exists an adversary that aims to cause collisions or other unsafe
behaviors. The adversary has the capability to utilize any state-of-the-art spoofer for different
sensors to conduct false data injection to perturb the observations. The injected false data
denoted as a can bias the system state estimation and cause the system to make incorrect
control decisions. We denote the perturbed observations as

ȳ[k] = o(x[k]) + v[k] + a[k]. (5.5)

The adversary can also compromise the LiDAR sensor by creating a near obstacle as demon-
strated in [138]. The adversary fires laser beams to inject several artificial points e′ into a
LiDAR scan. We denote the compromised LiDAR scan as S⊕ e′, where ⊕ is a merge function
introduced by [138]. However, due to the physical limitation of spoofer hardware, the injected
point can only be within a very narrow spoofing angle, i.e. 8◦ horizontal angle.

We index the LiDAR sensor as the 0-th sensor and define I = {0}
⋃
Ip. We denote the set

of sensors attacked by the adversary as A ⊆ I. We assume that the system is uniformly
observable from the sensors in I\A. We assume that, at each time k, the support of a[k] is
contained in A.

We define the state space X and a safety set C as

X = {x : h(x) ≥ 0}, C = {x ∈ X : h0(x) ≥ 0},

where h, h0 : X 7→ R. We say system (5.1) is safe with respect to C if x[k] ∈ C for all time
k = 0, 1, We assume that the safe region C is pre-defined and known by the system, and
the initial state of the system is safe, i.e. x0 ∈ C.

Problem 5.1. Given a map M and a safety set C, we consider a nonlinear LiDAR-based
system with dynamics (5.1) that is controlled by a nominal controller. The problem studied

143

is to find a scheme to ensure system safety with desired probability (1− ϵ), where ϵ ∈ (0, 1),
when an adversary is present.

Estimating Pose By Comparing Scans

Pose refers to the position of the system in a Cartesian coordinate frame. Pose estimations
with LiDAR scans have been extensively studied. NDT [146], as one of the widely-used
approaches, models the distribution of all reconstructed 2D-Points of one laser scan by a
collection of local normal distributions.

Consider two states x1, x2 ∈ X and the LiDAR scans O(x1, S1) and O(x2, S2) collected
at x1 and x2, respectively. The NDT method estimates the relative pose change as r =

O(x1, S1) ⊖ O(x2, S2), where ⊖ is a scan match operation. The scan match operation is
implemented as follows. The NDT method first subdivides the surrounding space uniformly
into cells with constant size. For each cell in O(x1, S1), the mean q and the covariance matrix
Σ are computed to model the points contained in the cell as the normal distribution N(q,Σ).
Denote the points in O(x2, S2) as pi, i ∈ ns, where pi is a position vector and ns is the
number of valid points. Define loss function Ls(r′) as

Ls(r′) =
∑
i

exp

(
−((pi − r′)− qi)TΣ−1

i ((pi − r′)− qi)
2

)
(5.6)

The relative pose change r′ is estimated by solving the minimization problem

min
r′
−Ls(r′) (5.7)

with Newton’s algorithm. We use r to denote the solution to (5.7) for the rest of the paper.
The corresponding loss Ls(r) can be computed with the output of scan match r by (5.6).

5.2.3 2D-LiDAR Fault Tolerant Safe Control

In this section, we propose a framework for safe control that is compatible with existing LiDAR-
based autonomous systems. We first give an overview and then describe each component in
detail.

144

Overview of Framework

We consider a system with dynamics (5.1) and observation model (5.2) in the presence of
an adversary, as described in Section 5.2.1. To guarantee the system’s safety under attacks,
we propose a fault tolerant framework to ensure safety at each time step. The framework
consists of two parts, namely fault tolerant estimation and fault tolerant control.

The idea of fault tolerant estimation is to exclude compromised sensors in Ip by utilizing
additional information contained in LiDAR sensor measurements. We maintain a set of
state estimations x̂i using EKF, where i ∈ Il ⊆ 2Ip and each element of i ∈ Il is a collection
of sensors in Ip such that system (5.1) is uniformly observable from the sensors in Il. As
shown in Fig. 5.1, a fault tolerant estimation reconstructs a LiDAR observation, denoted as
O(x̂i,M), for each state estimation x̂i. The reconstruction is achieved by simulating the scan
process on knowledge map M with state estimate x̂ being the center. We propose a fault
tolerant LiDAR estimation to compare the estimated LiDAR scan O(x̂i,M) with the actual
LiDAR measurement O(x, S). The comparison then provides a pose estimation. Using the
pose estimation, our proposed fault tolerant state estimation excludes the conflicting state
estimations, i.e., the state estimations that deviate from the LiDAR estimation.

After excluding the conflicting state estimations using fault tolerant estimation, we then
design fault tolerant safe control to ensure safety of the system at each time step. Fault
tolerant safe control computes an input uo that does not deviate too far from the nominal
controller π(x̂i) for all i given by the fault tolerant estimation. The safety of uo is certified
by a discrete-time barrier certificate.

In what follows, we describe the fault tolerant estimation in two-fold, that is fault tolerant
LiDAR estimation (Section 5.2.3) and fault tolerant state estimation (Section 5.2.3).

Fault Tolerant LiDAR Estimations

In the following, we introduce fault tolerant LiDAR estimation. This procedure converts each
state estimation x̂i given by EKFs to an estimated LiDAR observation O(x̂i,M) using map
M. The estimated LiDAR observation is then compared with the actual LiDAR observation
to exclude possible faults in state estimations.

145

Figure 5.1: Fault tolerant estimation for LiDAR-based system removes conflicting state
estimations by comparing estimations of proprioceptive sensors with additional information
from exteroceptive sensors measurements.

Fault tolerant LiDAR estimation is presented in Alg. 8. Given parameters on the resolution
of the LiDAR scan cr and maximum LiDAR range rmax, we initialize the estimated scan
SM = {(lrk, lak)} with a circle centered at x̂i and radius as rmax. We equally divide the circle
and assign sectors Sk to the corresponding lak. Next, we represent the points in map M
using polar coordinates with the origin at x̂i. To simulate the scan, we assign the closest
point to the scan from line 6 to 10. We iterate through all points mj ∈ M. For the point
in sector Sk, we replace lrk with mr

j if mr
j ≤ lrk. Then we remove the points that have never

been updated. Finally, we output estimated observation O(x̂i,M) = O(x̂i, SM). Intuitively,
this estimated observation can be viewed as the output of a LiDAR scan centered at state x̂i
with object locations given in the mapM. Hence, any deviation of the estimated and actual
scans indicates either an error in the state estimate or a spoofing attack on the scan.

Next, we consider the case where the adversary not only injects false data into prorioceptive
sensors but also spoofs LiDAR sensors. The intuitive countermeasure is to remove the region
of the scan that is impacted by false data. Since the adversary is only capable of modifying
points in the scan within a narrow spoofing angle, our approach is to partition the scan and
map into regions cj and attempt to identify which region has been impacted by spoofing.
That region is then removed from the scan and the estimated scan. Since the adversary tries
to bias the state estimation, we model the problem of choosing a set of observations to ignore
in order to mitigate the impact of false data as a minimax optimization

min
e′I

max
cj
Ls(r̃) (5.8)

where r̃ = O(x̂i,M\cj)⊖O(x, S ⊕ e′I\cj). We search for subdivision cj through the LiDAR
observation space with Alg. 9, which is detailed as follows.

146

The adversary compromises the LiDAR scan S by merging it with false data e′I , denoted as
S ⊕ e′I . As shown in Alg. 9, we take in state estimation x̂i, number of sectors nj, mapM,
and scan S to search for sector cj over scan S. The algorithm outputs the corresponding
estimated relative pose r̃j. For each sector cj, we estimate observations O(x̂i,M\cj) with
Alg. 8 and reconstruct the corresponding LiDAR observation O(x, S ⊕ e′I\cj). Next, we
compute njs, the number of points contained in S\cj , and perform scan match to obtain r̃ by

r̃j = O(x̂i,M\cj)⊖O(x, S ⊕ e′I\cj). (5.9)

Then, we compute the loss function Ls(r̃) and the performance degradation ζjs = njs − Ls(r̃).
Finally, we output r̃j and cj for ζjs ≤ ζ̄s. In what follows, we compute the upper bound ζ̄s

of the degradation of the loss Ls brought by noise as the criteria of whether LiDAR sensor
is affected by factors other than noise. We consider a point pi sampled in the LiDAR scan
collected at state x with a zero-mean disturbance wi whose norm is bounded as ∥wi∥ ≤ w̄i.

Theorem 5.1. Consider a state x and its state estimation x̂. Let O(x, S) and O(x̂,M)

be LiDAR scan and estimated LiDAR observation. Let r = O(x̂i,M) ⊖ O(x, S) and r̃ be
computed by (5.9) when adversary present. In the case where the LiDAR sensor is not
attacked, we have the performance degradation ζs is bounded by

ζs := Lmaxs (r)− Ls(r)

≤ ns −
∑
i

exp

(
−w̄2

i λ(Σ
−1
i)

2

)
=: ζ̄s, (5.10)

where Lmaxs (r) is the maximum of (5.6), ns is the number of points contained in S, and
λ(Σ−1

i) is the maximum eigenvalue of Σ−1
i .

When the LiDAR sensor is attacked, if a subdivision cj ⊇ e′I can be found by Alg. 9, we have
the performance degradation of scan match is bounded as (5.10), where ns is the number of
points contained in S\cj and the summation is over all points in S \ cj.

147

Proof. We first show that Lmaxs (r) = ns. Then we derive a lower bound for Ls(r). Since
covariance Σi is positive definite, using (5.6) we have

Lmaxs (r)

=
∑
i

exp

(
−((pi − r)− qi)TΣ−1

i ((pi − r)− qi)
2

)
≤
∑
i

exp (0) = ns.

Let pi be a point sampled in LiDAR scan. We have that ((pi − r)− qi) ≤= wi with wi being
the realized disturbance when sampling pi. Since ∥wi∥ ≤ w̄i and Σ−1

i is Hermitian, we then
have

∑
i

exp

(
−((pi − r)− qi)TΣ−1

i ((pi − r)− qi)
2

)
≥
∑
i

exp

(
−w̄2

i λ(Σ
−1
i)

2

)
.

Hence, we have that ζs is bounded as (5.10).

When the LiDAR sensor is spoofed, there always exists a subdivision cj such that the false
data e′I satisfies e′I ⊆ cj. If cj is successfully identified by Alg. 9, then the subdivision cj

along with the false data e′I are ignored. In this case, our analysis for the scenario where the
LiDAR sensor is not attacked can be applied, yielding the bound in (5.10) with ns being the
number of points contained in S \ cj. If cj containing e′I is not identified and is not ignored,
then by line 10 of Alg. 9, we have that ζjs ≤ ζ̄s and thus the bound in (5.10) follows.

Fault Tolerant State Estimation

We next propose the criteria to develop an algorithm for a fault tolerant state estimation that
provides bounded estimation error under false data attacks on the proprioceptive sensors.
Our approach computes a set of indices Ia ⊆ Il that are removed to ensure that the state
estimation error is bounded. Given a state estimation deviation threshold θh and a scan
match degradation threshold ζ̄s, a state estimate is not removed (i.e. i /∈ Ia) if either of the
following criteria holds:

148

• Case I: i /∈ Ia for estimation indexed i ∈ Il, if ∥ri∥ ≤ θh and ζ is ≤ ζ̄s.

• Case II: i /∈ Ia for estimation indexed i ∈ Il, if ∥r̃i∥ ≤ θh and ζ̃ is ≤ ζ̄s.

We consider LiDAR observation is trusted, if for all i ∈ Il estimated LiDAR observation, the
scan match degradation ζ is ≤ ζ̄s. In Case I, we have the scan match degradation ζ is ≤ ζ̄s,
and the pose deviation ∥ri∥ ≤ θh. We draw the conclusion that x̂i agrees with the LiDAR
observation, and hence i ∈ I\Ia. When the LiDAR observation is not trusted, we reconstruct
estimated and actual LiDAR observation with Alg. 9 to exclude section cj. In Case II, we
have the reconstructed scan match degradation ∥r̃i∥ ≤ θh, and the pose deviation within
tolerance with ζ̃ is ≤ ζ̄s. We draw the conclusion that i ∈ I\Ia.

In what follows, we show that sensor i ∈ I\Ia selected by criteria is attack-free and we can
further have the deviation of FT-Estimation bounded by the EKF error bound of selected
sensors.

Theorem 5.2. Given scan match results ri, r̃i and ζ̄s, for sensor i ∈ I\Ia given by criteria I
and II, we have estimation error bounded as ∥x− x̂i∥ ≤ ζ̄i.

Proof. We prove by contradiction. We suppose that there exists a sensor b ∈ I\Ia, whose
estimation x̂b satisfies ∥x− x̂b∥ > ζ̄b. We next show contradictions for Case I and II.

In Case I, set θh = mini ζ̄i. Since ζbs ≤ ζ̄s, we have that LiDAR scan matches with estimated
scan with relative pose change r = x− x̂b. If sensor b is included in I\Ia, we have ∥x− x̂b∥ ≤
θh ≤ ζ̄b, which contradicts to ∥x− x̂b∥ > ζ̄b.

In Case II, set θh = mini ζ̄i. Since ζ̃bs ≤ ζ̄s, we have that LiDAR scan matches with
estimated scan with relative pose change r̃ = x− x̂b. If sensor b is included in I\Ia, we have
∥x− x̂b∥ ≤ θh ≤ ζ̄b, which contradicts to ∥x− x̂b∥ > ζ̄b.

Otherwise, sensor b will be excluded into set Ia and hence for any sensor i ∈ I\Ia we have
the error bounded.

149

5.2.4 Fault-Tolerant Control Barrier Certificate

We next present the fault tolerant control synthesis to ensure safety of the system. We set
the state estimation as x̂α[k] = x̂i, for some i ∈ I\Ia. We define the control input signal as
uo[k] = π(x̂α[k]) + û[k]. In what follows, we assume the nominal controller is of the form
π(x) = π0 +Kcx̂α for some π0 ∈ Rm and matrix Kc. Since we have ||x[k]− x̂α[k]|| ≤ ζ̄α by
Theorem 5.2, the nominal control input for the estimated state satisfies

||π(x̂α[k])− π(x[k])|| = ||Kc(x[k]− x̂α[k])|| ≤ ||Kc||ζ̄α.

Hence, if we choose uo[k] such that ||û[k]||2 ≤ ξ − ||Kc||ζ̄α for some ξ ≥ 0, then we can
guarantee that the chosen control input is within a bounded distance of the nominal control
input corresponding to the true state value.

Proposition 5.1. Consider a discrete-time system described by (5.1) and sets C,D ⊆ X . If
there exist a function B : X → R+

0 , a constant c ≥ 0, a linear controller u = Kcx, and a
constant γ ∈ [0, 1) such that

B(x) ≤ γ, ∀x ∈ C (5.11)

B(x) ≥ 1, ∀x ∈ D (5.12)

E[B(f(x) + g(x)(Kcx+ û)

+ w) | x] ≤ B(x) + c,
∀x ∈ X ,∀∥û∥ ≤ ξ (5.13)

then for any initial state x0 ∈ C, we have the Pr(x[k] ∈ C, 0 ≤ k ≤ Td) ≥ 1− γ − cTd.

Proof. We have uo− u = Kcx−Kcx̂α+ û. Since ∥û∥ ≤ ξ−Kcζ̄α and ∥Kcx−Kcx̂α∥ ≤ Kcζ̄α.
By triangle inequality, we can have ∥uo−u∥ ≤ ξ. Since there exists a function B(x) satisfying
(5.11) to (5.13), B(x) is a control barrier certificate for system (5.1). According to [17] and
(5.12), we have

Pr {x[k] ∈ D for some 0 ≤ k < Td | x(0) = x0}

≤ Pr

{
sup

0≤k<Td
B(x[k]) ≥ 1 | x(0) = x0

}
≤ B (x0) + cTd ≤ γ + cTd.

150

We define hξB(û) = (ξ −Kcζ̄α)
2 − ∥û∥22. The system has continuous state space X and action

space U , we can follow the standard procedure to compute control barrier certificate B(x) by
solving an SOS programming given as follows:

Proposition 5.2. Suppose there exist a function B(x) and polynomials λ0(x), λ1(x), λx(x, û)
and λû(x, û) such that

−B(x)− λ0(x)h0(x) + γ is SOS (5.14)

B(x) + λ1(x)h0(x)− 1 is SOS (5.15)

−E[B(f(x) + g(x)(Kcx+ û) + w) | x]+

B(x)− λ(x)h(x)− λû(x, û)hξB(û) + c is SOS (5.16)

then for any initial state x0 ∈ C, we have the Pr(x[k] ∈ C, 0 ≤ k ≤ Td) ≥ 1− γ − cTd.

Proof. Since the entries B(x) and λ0(x) in −B(x) − λ0(x)h0(x) + γ are SOS, we have
0 ≤ B(x) + λ0(x)h0(x) ≤ γ. Since the term λ0(x)h0(x) is nonnegative over C, (5.14) and
(5.15) implies (5.11) and (5.12) in Proposition 5.1. Since the terms λû(x)hξB(û) and λ(x)h(x)
are nonnegative over set X , we have (5.13) holds, which implies that the function B(x) is a
control barrier certificate.

The choice of ξ uses a similar approach as [55] by solving the SOS program offline to enhance
the scalability. Other numerical issues of SOS program such as sparsity and ill-conditioned
problem are investigated in [147, 148].

We propose Alg. 10 to compute feasible control inputs to ensure safety at each time-step k.
We initialize Ia ← ∅ and define Ωi∈I\Ia := {uo : (uo − ui)T (uo − ui) ≤ ξ}. At each time-step
k we maintain nl state estimations for sensors in Il and compute control input ui := π(x̂i)

with a nominal controller. We compute uo by solving (5.17), where J is a cost function. If
no such uo exists, we perform Alg. 9 and fault tolerant state estimation to remove conflicting
sensors.

Theorem 5.3. Given a safe set C and ζ̄s, if the following conditions hold: (i) Assumption
1 holds, and (ii) scan match results r and r̃ can be found at each time step k, and (iii)

151

-100 -50 0 50 100

[x]
1

-80

-60

-40

-20

0

20

40

60

80
[x

] 2
LiDAR Scan and Compromised INS1 Estimate

LiDAR Scan

INS1 Estimate

UAV Position

(a)

-100 -50 0 50 100

[x]
1

-80

-60

-40

-20

0

20

40

60

[x
] 2

LiDAR Scan and INS2 Estimate

LiDAR Scan

INS2 Estimate

UAV Position

(b)

-100 -50 0 50 100

[x]
1

-80

-60

-40

-20

0

20

40

60

80

[x
] 2

Spoofed LiDAR Scan and Compromised INS1 Estimate

LiDAR Scan

INS1 Estimate

UAV Position

(c)

-100 -50 0 50 100

[x]
1

-80

-60

-40

-20

0

20

40

60

[x
] 2

Spoofed LiDAR Scan and INS2 Estimate

LiDAR Scan

INS2 Estimate

UAV Position

(d)

Figure 5.2: Comparison between the estimated LiDAR observations (blue lines) and actual
LiDAR observations (pink lines). Fig. 5.2a to 5.2b compares the estimated and actual LiDAR
observations under attack Scenario I (INS1 compromised). The estimate based on INS1
deviates from the actual scan, causing the compromised sensor INS1 to become untrusted. Fig.
5.2c to 5.2d compares the estimated and actual LiDAR observations under attack Scenario II
(INS1 and LiDAR compromised). Fig. 5.2a and Fig. 5.2c estimate the LiDAR scan using the
compromised measurements from INS1. Fig. 5.2b and Fig. 5.2d estimate the LiDAR scan
using the measurements from INS2. The proposed approach removes the spoofed obstacle
and aligns with the non-compromised sensor INS2.

there exists a function B(x) satisfying the conditions in Proposition 5.1, then we have
Pr(xk ∈ C, ∀0 ≤ k ≤ T) ≥ 1− γ − cT when the adversary is present.

Proof. Given condition (i), (ii), and ζ̄s, by Theorem 5.2, ∥x− x̂i∥ ≤ ζ̄i for each sensor i ∈ I\Ia.
In Alg. 10, u is computed by a nominal controller and û is computed by solving (5.17). By
condition (iii) and Proposition 5.1, we have Pr(x[k] ∈ C, 0 ≤ k ≤ Td) ≥ 1− γ − cTd.

5.2.5 2D-LiDAR FTC Evaluation

This section evaluates our proposed approach on a UAV delivery system in an urban environ-
ment. The UAV system is based on MATLAB UAV Package Delivery Example [149]. The
UAV adopts stability, velocity and altitude control modules, rendering its position control
dynamics to be:[

[x]1

[x]2

]
k+1

=

[
1 −4.29× 10−5

−1.47× 10−5 1

][
[x]1

[x]2

]
k

+

[
0.0019 −1.93× 10−5

−2.91× 10−4 0.0028

][
[u]1

[u]2

]
k

, (5.18)

152

where x[k] = [[x]1, [x]2]
T is the UAV position, [x]1 and [x]2 represent the position of UAV on

X-axis and Y -axis, respectively. The UAV has one LiDAR sensor and two inertial navigation
system (INS) sensors, denoted as INS1 and INS2. The UAV maintains two EKFs associated
with each INS sensor to estimate its position at each time k, denoted as x̂1[k] and x̂2[k],
respectively. The system operates in the presence of an adversary who can compromise one
of the INS sensors and spoof the LiDAR sensor.

We compare our proposed approach with a baseline utilizing a PID controller with state
estimations given by INS1. We first demonstrate how our proposed approach selects sensors
via Alg. 8 and Alg. 9 to obtain an accurate state estimation. We consider two attack
scenarios. In Scenario I, the adversary compromises INS1 to deviate the measurement by −20
meters along the X-axis. In Scenario II, the adversary spoofs both the LiDAR sensor and
INS1. The adversary biases INS1 sensor by −20 meters on X-axis and generates a random
obstacle in the LiDAR scan within range of [10, 15] meters and angle of [−70,−60] degrees.

We present the estimated and actual LiDAR observations under Scenario I in Fig. 5.2a-5.2b.
In Fig. 5.2a, we note that the estimated LiDAR observations O(x̂1,M) generated using state
estimation x̂1 from INS1 significantly deviates from the actual LiDAR observations (the scan
in pink color). The estimated LiDAR observations O(x̂2,M) align with the actual one as
shown in Fig. 5.2b, which satisfies the criteria given in Section 5.2.3. Therefore, we treat
INS2 as a trusted sensor while ignoring the measurements from INS1 when computing control
input to the UAV.

We next compare the estimated and actual LiDAR observations under Scenario II in Fig.
5.2c-5.2d. The adversary manipulates the LiDAR observations by injecting a set of false

-190 -180 -170 -160 -150 -140 -130 -120 -110 -100 -90

[x]
1

0

20

40

60

80

100

120

[x
] 2

Comparison of UAV Trajectories Under Attack

U
n

sa
fe A

rea

Baseline

Proposed Method

Map

Figure 5.3: Comparison of trajectories of the UAV when controlled using our proposed
approach and the baseline.

153

points around position (5.5,−11.6). In Fig. 5.2c, we observe a significant drift between
the estimated LiDAR observations O(x̂1,M) and actual LiDAR observations O(x, S). In
Fig. 5.2b, the obstacle points contained in sector c generated by the LiDAR spoofing attack
are eliminated by Alg. 9, and thus the estimated LiDAR observations O(x̂2,M\c) aligns
with the LiDAR observations O(x, S\c). In this case, our proposed fault tolerant estimation
indicates that INS1 should be ignored and INS2 can be trusted.

We finally present the trajectories of the UAV with our proposed fault tolerant control (Alg.
10) and with the baseline. We present the trajectory of our proposed approach in Fig. 5.3 as
the solid blue line, and the trajectory of the baseline as the dashed pink line. We observe that
our proposed approach ensures the UAV to successfully avoid all obstacles and the unsafe
area, whereas the baseline leads to safety violation due to lack of schemes to exclude faulty
measurements.

5.3 Resilient Safe Control of 3D-LiDAR-based Systems

Autonomous vehicles rely on LiDAR sensors to detect obstacles such as pedestrians, other
vehicles, and fixed infrastructures. LiDAR spoofing attacks have been demonstrated that
either create erroneous obstacles or prevent detection of real obstacles, resulting in unsafe
driving behaviors. In this section, we propose an approach to detect and mitigate LiDAR
spoofing attacks by leveraging LiDAR scan data from other neighboring vehicles. This
approach exploits the fact that spoofing attacks can typically only be mounted on one vehicle
at a time, and introduce additional points into the victim’s scan that can be readily detected
by comparison from other, non-modified scans. We develop a Fault Detection, Identification,
and Isolation procedure that identifies non-existing obstacle, physical removal, and adversarial
object attacks, while also estimating the actual locations of obstacles. We propose a control
algorithm that guarantees that these estimated object locations are avoided. We validate our
framework using a CARLA simulation study, in which we verify that our FDII algorithm
correctly detects each attack pattern.

In what follows, we introduce the LiDAR observation and threat model that we consider in
this section.

154

3D LiDAR Observation Model

A LiDAR sensor fires and collects ns laser beams and calculates the relative distance and
angles to objects. For a laser beam indexed i ∈ [1, ns] ⊆ Z+, we let pi := (sri , s

a
i , s

ϕ
i), where sri

denotes the range, sai denotes the horizontal angle, and sϕi denotes vertical angle. A LiDAR
sensor observes the environment by constructing a scan S := {pi, 1 ≤ i ≤ ns}. We denote the
Cartesian translated LiDAR scan S measured at pose x asO(x, S) := {(oxi , o

y
i , o

z
i), 1 ≤ i ≤ ns},

where oxi , o
y
i , and ozi denote the x, y, and z coordinates of pi. We assume that the vehicle has

a default map, containing the locations of the infrastructure (for example, walls).

Threat Model

The purpose of the attacks is to disrupt the output of object detection algorithms of the
LiDAR perception by either falsifying non-existing obstacles or hiding existing obstacles.
Attacks on the positioning of the vehicle are out of scope. In this section, we consider three
attacks with different purposes and implementation methods, as shown in Fig. 5.4.

Spoofed
area 𝜀 data

𝑒!

Agent A Agent B

Spoofer

Occupied area

(a) Relay attacks falsify non-existing ob-
stacles.

Spoofed
area 𝜀 data

𝑒!

Agent A Agent B

Spoofer

Occupied areaOccupied area

(b) Physical removal attacks hide the
object from the LiDAR detector.

Spoofed
area 𝜀 data

𝑒!Agent A Agent BAdv-Obj

Fail to detect

Occupied areaOccupied area

(c) Adversarial objects can hide from the
LiDAR detector.

Figure 5.4: Illustration of three attack types against LiDAR-based perception. Each attack
type leaves a trace in the raw data that can be detected using our proposed approach.

155

Non-Existing Obstacle (NEO): The spoofer falsifies non-existing obstacles by introducing
relay perturbations (Fig. 5.4a). In a relay attack, the adversary fires laser beams to inject
artificial points e′ into a LiDAR scan S. The resulting scan has points S ∪ e′. Due to the
physical limitation of the spoofing hardware, the injected point can only be within a very
narrow spoofing angle. Hence, in this section, we assume that the relay adversary can only
spoof one LiDAR sensor. As a result of the attack, the LiDAR detection algorithm incorrectly
detects an obstacle between the spoofer and the LiDAR sensor.

Physical Removal Attack (PRA): As shown in Fig. 5.4b, the spoofer implements the physical
removal attacks by sending a relay signal to the LiDAR receiver. The LiDAR detection
algorithm believes that the true obstacle does not exist. In the scan S of the compromised
LiDAR, there are artificial points e′ between the true obstacle and the LiDAR. In order to
realize the attack successfully, artificial points e′ will reach the LiDAR receiver first and
obscure the true obstacle. The true LiDAR signal reflected by the obstacle will be discarded
by the LiDAR receiver. Due to the physical limitation of the spoofing hardware, only one
LiDAR is compromised by the spoofer.

We further divide Attack PRA into three categories, based on whether the area containing
the artificial points is fully observed by the uncompromised LiDAR sensor (PRA1), partially
observed (PRA2), or not observed (PRA3).

Adversarial Object (AO): Adversarial objects are synthesized to be undetectable to the object
detection algorithms of the LiDAR perception systems in a certain range of distance and
angle (Fig. 5.4c). The adversarial objects introduce disturbance signal e′ in the LiDAR scan
S. More than one LiDAR sensor may be compromised by one adversarial object.

In this section, we assume that at most one attack occurs. The attack could be any of attacks
NEO, PRA, or AO, and the autonomous vehicle (AV) does not know the attack type a priori.

5.3.1 3D LiDAR Fault Detection and Safe Control

In what follows, we propose a detection and control approach to ensure safety of the vehicle
in an adversarial environment. The proposed approach is illustrated as Fig. 5.5. The victim
agent leverages LiDAR observations from neighboring agents to detect and identify faults in
two steps, namely, occupied area identification and the FDII, which are described as follows.

156

Bounding
boxes

FDIIOccupied area
identification

Agent A
LiDAR Sensor Raw data

𝑂(𝑥!, 𝑆!)

LiDAR detector

𝑈! ,𝑈"

Raw data
𝑂(𝑥!, 𝑆!)

Controller

Updated
safe
region 𝐶

Plant

Safe control
input 𝑢

Nearby Agent 𝑗 𝑂(𝑥", 𝑆")

Attacker

𝑂#$(𝑥! ,𝑆!)

Figure 5.5: Schematic illustration of the proposed approach: to identify attacks marked in
red, Agent A requests point cloud from nearby agents, i.e., Agent j. Then, FDII module
takes UA,Uj,Obk(xA, SA) and outputs detected attack type and updated safe region C. Finally,
controller output safe control input u.

Occupied Area Identification

In this subsection, we present our method to identify and extract the area that either contains
obstacles or is not observable by the LiDAR, which we denote the occupied area. The detected
occupied area will then be combined with the information from other vehicles to detect
attacks and compute the unsafe region (Section 5.3.1).

We first prune the raw data of the observation O(x, S) by removing the points corresponding
to the infrastructure (for example, walls) on a default map. For the rest of the paper, we use
O(x, S) to denote the pruned observation. For Agent A, denote L := {j : IA ∩ Ij ̸= ∅} as
the set of agents which have an overlapping scan-covered area with Agent A. We define the
vertical projection operation P(O(x, S)) −→ Y , which takes an observation O(x, S) as input
and outputs the set Y of the projections of the points in O(x, S) onto the x-y coordinate
plane. We define a non-obstacle scan-covered area Ij = P(Ō(x, S)) as the projection of
the observation of Agent j, where Ō(x, S) denotes the pruned observation within maximum
LiDAR perception range.

We utilize the altitude coordinates of the points to distinguish the ground and the obstacle
as described in [150][151]. We let ζz denote the estimation error of the altitude coordinate.
The detection algorithm identifies pi = (oxi , o

y
i , o

z
i) as belonging to the ground if ozi ≤ ζz and

belonging to an obstacle if ozi > ζz. After ground removal, we use the 3D bounding box
provided by the LiDAR-based 3D object detection algorithms of the autonomous vehicles
(AVs) [152] to cluster the points into a collection of obstacles, denoted Ob

k(x, S) ⊆ O(x, S).

Each obstacle has a corresponding bounding box denoted Bk ⊆ R3. Here, the index k ranges

157

from 1 to njo, where njo denotes the number of obstacles detected by Agent j. Note that
the set Ob

1(x, S), . . . , O
b
nj
o
(x, S) may contain fake obstacles introduced by an adversary. We

regard the points that do not belong to any bounding box as the points introduced by Attack
PRA or Attack AO. We further calculate the oblique projections Opk(x, S) of the points in
Obk(x, S), which consists of the points where a straight line from the sensor to each point in
Obk(x, S) intersects the ground. We have that Opk(x, S) ⊆ R3.

We let Ujk denote the occupied area corresponding to Obstacle k observed by Agent j, which
consists of the area that contains the obstacle as well as the area that is obscured by the
obstacle. Formally, the occupied area Ujk is computed as the convex hull of P(Obk(x, S)) ∪
Opk(x, S). The convex hull can be calculated via open-source tools such as Scipy [153]. In order
to compute the convex hull, we first obtain a collection of pairs of points {(xl1, yl1), (xl2, yl2) :
l = 1, . . . , nhjk} from the object detection and oblique projection algorithms, where nhjk is the
number of the boundaries of Obstacle k observed by Agent j. For each pair indexed l, we
compute a half-plane constraint hjkl (x) ≤ 0 with hjkl (x) = ajkl × x+ bjkl where ajkl and bjkl are
defined as ajkl =

yl2−yl1
xl2−xl1

and bjkl =
xl2×yl1−xl1×yl2

xl2−xl1
. The convex hull is equal to the intersection of

the half-plane constraints, i.e.,

Ujk =
nh
jk⋂
l=1

{x : hjkl (x) ≤ 0}.

The occupied area computed by the above procedure may not fully contain the obstacle due to
the fact that the obstacle location must be interpolated from a finite number of samples. We
enhance the robustness of these sampling errors by changing the boundaries of the occupied
area to hjkl (x)− ||a

jk
l ||ζh ≤ 0, where ζh = ζn + ζr, where ζn is the observation noise bound

and ζr is a bound on the distance between neighboring sample points that can be obtained
from the distance to the object and the angular resolution of the LiDAR. We assume that
the LiDAR resolution is sufficiently large such that each point on the obstacle that is in the
line-of-sight of the LiDAR is at most ζr distance away from at least one scan point.

In what follows, we will show that each obstacle visible to Agent j (including false or
adversarial objects) is contained in an occupied region that is computed according to the
procedure described above. Let P ob ⊆ R3 denote the location of an obstacle. We divide the
obstacle into two parts. The first part is the set of points in P ob that have line-of-sight with

158

the LiDAR. We denote the first part as P1. The second part, which is denoted as P2, is the
set of points in P ob that do not have line-of-sight with the LiDAR.

Assumption 5.2. For Agent j ∈ L with occupied areas Ujk, k ∈ {1, . . . , njo} and Obstacle
k′ ∈ {1, . . . , njo} with the set of points P ob

k′ ⊆ R3, we have P(P ob)
⋂
(∪k∈{1,...,nj

o}\{k′}Ujk) = ∅.

Intuitively, Assumption 5.2 implies that for any obstacle visible to agent j, there is no overlap
between the obstacle and the occupied area of any other obstacle detected by agent j.

Lemma 5.1. Suppose that Assumption 5.2 holds and we are given the observation of an
obstacle Obk(x, S) in a bounding box and the set of oblique projections Op(x, S). If occupied
area U is computed as the convex hull of P(Obk(x, S)) ∪ Op(x, S), then P(P ob) ⊆ U .

Proof. As described above, P ob = P1 ∪ P2. In what follows, we describe how P(P1) ⊆ U and
P(P2) ⊆ U , and hence P(P ob) ⊆ U .

P1: Let x ∈ P1. By assumption, since every point in P1 is in the line of sight of the LiDAR,
there exists a sample point x′ such that ||x′ − x|| ≤ ζh. Hence, for all l = 1, . . . , nhjk, we have

hjkl (x) = ajkl x+ bjkl

= ajkl (x− x′) + ajkl x
′ + bjkl

≤ ||ajkl ||ζh + bjkl + ajkl x
′

≤ ||ajkl ||ζh

where the first inequality follows from Cauchy-Schwartz and the second inequality follows
from the fact that hjkl (x′) ≤ 0 for all scan points x′. Hence x lies in the occupied area.

P2: Suppose there is a point p = (sr, sa, sϕ) = (ox, oy, oz) ∈ P2. There must exist a point
p∗ = (sr∗, s

a
∗, s

ϕ
∗) = (ox∗ , o

y
∗, o

z
∗) ∈ P1 such that sa = sa∗, sϕ = sϕ∗ and sr > sr∗, which block the

line-of-sight between the LiDAR and p. We denote the oblique projection of p and p∗ as po.
Since sa = sa∗ and sϕ = sϕ∗ , the oblique projections of p and p∗ are identical, which means
that p, p∗, and po are collinear. Hence, the projection P(p), the projection P(p∗), and P(po)
are colinear.

Finally, we show that P(p) belongs to the convex hull. Since the convex hull contains P1 and
its oblique projection, P(p∗) and p0 belong to the convex hull. Since the convex hull is a

159

convex set, it contains the line segment p0P(p∗). Since the projection P(p), the projection
P(p∗), and p0 are collinear, P(p) belongs to the line segment p0P(p∗), which means that P(p)
belongs to the convex hull.

Since both the projections of the points in P1 and P2 belong to the convex hull, and the
occupied area U is computed as the convex hull of P(Obk(x, S)) ∪ Op(x, S), thus we have
P(P ob) ⊆ U .

Fault Detection, Identification, and Isolation

The objective of the proposed fault detection, identification, and isolation (FDII) module is
to detect the deviations between the observations of different agents, identify the spoofed
agent, isolate the corrupted parts of the raw data, and restore the true unsafe region. The
proposed FDII module is illustrated as Fig. 5.6. FDII first iterates over all detected obstacles
to detect faults by leveraging LiDAR scan data from other neighboring vehicles. It then
removes points contained in the bounding box and uses the residual point cloud for false data
detection and identification.

Detectable obstacles

Undetectable obstacles

Obstacle detected?

T
F

Pass scan match?

T
F

Real Obstacle Attack NEO

Remove points in
the Bounding box

𝒰! = ∅ ?

No obstacle

T

Pass scan match?

F

Attack
PRA3/AO

T

Attack PRA1/2

F

Figure 5.6: Decision tree of the FDII module: in the blue box, we iterate over detectable
obstacles to detect faults. Then we remove points contained in bounding boxes and pass the
remaining point cloud to the green box to identify undetectable obstacles.

We first describe how Agent A incorporates LiDAR information from other neighboring agents.
At each time, Agent A collects the current observations of nearby agents O(xj, Sj),∀j ∈ L, j ̸=
A, position xj , and sensor information including observation noise bound and resolution bound.

160

The corresponding observations O(xA, Sj), the observations of obstacles Obk(xA, Sj), and the
occupied areas Ujk are calculated by Agent A by repeating the steps described in Section 5.3.1.
In O(xA, Sj), Agent A marks the points in its bounding boxes as Obk(xA, Sj) = O(xA, Sj)∩Bk.
For each Obk(xA, Sj), Agent A calculates the corresponding Opk(x, S). Agent A then calculates
Ujk by computing the convex hull of P(Obk(x, S)) ∪ O

p
k(x, S).

We define the scan points in observation O(xA, SA) that is not detected by Agent A as
OuA(xA, SA) := O(xA, SA)\

⋃
kObk(xA, SA) and the undetected points in observation O(xA, Sj)

as Ouj (xA, SA) := O(xA, Sj)\
⋃
kObk(xA, Sj). We then compute their corresponding occupied

area UuA and Uuj by calculating their convex hulls.

We now analyze how each of the attacks defined in Section 5.3 affects the LiDAR perception
and occupied area identification introduced in Section 5.3.1. In what follows, we use A to
denote the index of the victim agent and analyze whether the obstacle observed by Agent A
could also be observed and validated by other agents, i.e. B under each of the attacks defined
in Section 5.3.

For Attack NEO , the artificial points e′ introduce a fake obstacle with points Obk(xA, SA ∪ e′).
Since there is no true obstacle, we have UBk = ∅, and as a corollary, P(Obk(xA, SA)) ⊈ UBk.

For Attack PRA1 , the spoofed obstacle location does not overlap with the occupied area of
agent B. Hence P(OuA(xA, SA ∪ e′)) ⊈ UuB and P(OuA(xA, SA ∪ e′)) ∩ UuB = ∅.

For Attack PRA2 , there are also fake OuA(xA, SA ∪ e′) and non-empty UuB. However, in this
case

P(OuA(xA, SA ∪ e′)) ⊈ UuB, and P(OuA(xA, SA)) ∩ UuB ̸= ∅,

because Agent B could only observe the partial space of OuA(xA, SA ∪ e′).

For Attack PRA3 and AO , P(OuA(xA, SA ∪ e′)) is fully covered by non-empty UuB, which
means P(OuA(xA, SA ∪ e′)) ⊆ UuB.

For the true obstacle, there is non-empty Obk(xA, SA ∪ e′) and non-empty UBk corresponding
to the true obstacle. According to Lemma 5.1, we have P(P ob) ⊆ UBk. Since Obk(xA, SA∪e′) ⊆
P(P ob), we have Obk(xA, SA ∪ e′) ⊆ UBk.

The following lemma uses the preceding analysis to describe how the scan data from agent B
can be used to detect and identify the attack type.

161

Lemma 5.2. If P(Obk(xA, SA ∪ e′)) \ UBk ≠ ∅, then Agent A is being targeted by an attack of
type NEO. If P(Obk(xA, SA∪e′))\UBk = ∅, then Obstacle k is a true obstacle. If P(OuA(xA, SA∪
e′))\UuB ̸= ∅, then Agent A is being targeted by PRA1 or PRA2. If P(OuA(xA, SA∪e′))\UuB = ∅,
then Agent A is under Attack PRA3 or AO.

Proof. We first consider the detectable obstacles Obk(xA, SA∪e′). If P(Obk(xA, SA∪e′))\UBk ̸=
∅, which is equivalent to P(Obk(xA, SA ∪ e′)) ̸= (P(Obk(xA, SA ∪ e′)) ∩ UBk), then we have
P(Obk(xA, SA ∪ e′)) ⊈ UBk. According to the previous analysis of the impact of the attacks,
Attack NEO occurs. If P(Obk(xA, SA ∪ e′)) \ UBk = ∅ and e′ = ∅, which is equivalent to
P(Obk(xA, SA ∪ e′)) = (P(Obk(xA, SA ∪ e′)) ∩ UBk), then we have P(Obk(xA, SA ∪ e′)) ⊆ UBk.
According to the previous analysis of the impact of the attacks, there is a true obstacle.

We next consider the undetectable obstacles OuA(xA, SA ∪ e′). If P(OuA(xA, SA ∪ e′)) \ UuB ̸= ∅,
which is equivalent to P(OuA(xA, SA ∪ e′)) ̸= (P(OuA(xA, SA ∪ e′)) ∩ UuB), then we have
P(OuA(xA, SA ∪ e′)) ⊈ UuB. According to the previous analysis of the impact of the attacks,
Attack PRA1 or PRA2 occurs. If P(OuA(xA, SA ∪ e′)) \ UuB = ∅, which is equivalent to
P(OuA(xA, SA ∪ e′)) = (P(OuA(xA, SA ∪ e′)) ∩ UuB), then we have P(OuA(xA, SA ∪ e′)) ⊆ UuB.
According to the previous analysis of the impact of the attacks, Attack PRA3 or AO
occurs.

We check whether P(Obk(xA, SA))\UBk is empty as follows. For each point p ∈ P(Obk(xA, SA)),
we check to see whether p satisfies hBkl (p)− ||ajkl ||ζh ≤ 0,∀l ∈ {1, . . . , nhBk}. If not, we put p
into P(Obk(xA, SA)) \ UBk. We name this operation a scan match.

We design the decision tree as shown in Fig. 5.6 to detect each attack. Agent A iterates
the bounding boxes to check whether an object is detected. The points in the bounding
box belong to either the non-existing obstacle from Attack NEO or the true obstacle. After
detecting and identifying the attack or authenticating that it is the true obstacle, Agent A
removes the points from the observation, then move on to the next bounding box. After
traversing all bounding boxes iteratively, Agent A checks whether there is still observation of
the obstacle. If not, there is no more attack or obstacle. If there is the observation of the
obstacle, there is an attack and a scan match will be done to decide the classification of the
attack.

162

After detecting the scan mismatch and identifying the spoofed agent, the proposed FDII
algorithm isolates the corrupted parts of the raw data and updates the unsafe region by
extracting the intersection of the unions of the occupied areas of the agents indexed in L.

The following theorem shows that the updated unsafe region (∪k=1,...,nA
o
UAk)

⋂
(∪m=1,...,nj

o
Ujm)

contains P(P ob
k),∀k ∈ {1, . . . , nAo }. We note that Assumption 5.2 is not required in Theo-

rem 5.4.

Theorem 5.4. Suppose we are given the occupied areas UAk of Agent A and Ujk of Agent j,
k ∈ {1, . . . , njo} in the area of IA ∩ Ij. If P(P ob

k) ⊆ IA ∩ Ij, then

P(P ob
k) ⊆ (∪k=1,...,nA

o
UAk)

⋂
(∪m=1,...,nj

o
Ujm)

for any of the attack types NEO, PRA, or AO.

Proof. First, we show that even if there is another obstacle P ob
k′ between P ob

k and Agent j,
P(P ob

k) ⊆ ∪kUjk holds.

For each obstacle P ob
k ,∀k ∈ {1, . . . , njo}, we consider two cases, namely (i) partially or fully

blocked case, in which there is another obstacle P ob
k′ between obstacle P ob

k and Agent j, and
P ob
k′ partially or fully blocks P ob

k from Agent j, and (ii) not blocked case, in which there is no
P ob
k′ that blocks P ob

k from Agent j.

Case (i): In this case, there exists k′ ∈ {1, . . . , njo} such that P(P ob
k) ∩ Ujk′ ≠ ∅. We divide

P ob
k into two parts: P(P ob

k) ∩ Ujk′ and P(P ob
k) \ Ujk′ . For P(P ob

k) ∩ Ujk′ , we have

(P(P ob
k) ∩ Ujk′) ⊆ Ujk′ ⊆ ∪kUjk.

For P(P ob
k)\Ujk′ , since there is line-of-sight between P(P ob

k)\Ujk′ and Agent j, Assumption 5.2
holds. According to Lemma 5.1, we have

(P(P ob
k) \ Ujk′) ⊆ Ujk ⊆ ∪kUjk.

Case (ii): In this case, P(P ob
k) ∩ Ujk′ = ∅,∀k′ ∈ {1, . . . , njo}. Since there is line-of-sight

between P(P ob
k) and Agent j, Assumption 5.2 holds. According to Lemma 5.1, we have

P(P ob
k) ⊆ Ujk ⊆ ∪m=1,...,nj

o
Ujm.

163

We next show that even if one of the Attack NEO, PRA, or AO occurs, P(P ob
k) ⊆ ∪m=1,...,nj

o
Ujm.

For Attack NEO, P(P ob
k) = ∅, then P(P ob

k) ⊆ ∪m=1,...,nj
o
Ujm.

For Attack PRA, we first consider the case where e′ is not blocked by any obstacle. According
to the threat model in Section 5.3, we have e′ obscuring P ob

k . Hence according to Case (i),
we have P(P ob

k) ⊆ Ujk ⊆ ∪m=1,...,nj
o
Ujm. We next consider the case when e′ is partially or

fully blocked by another obstacle k′. According to Case (i), we have P(P ob
k) ⊆ Ujk ∪ Ujk′ ⊆

∪m=1,...,nj
o
Ujm.

For Attack AO, obstacle P op
k could be treated as a true obstacle with observation O(xj, e′).

Hence, according to Case (i) and (ii), we have P(P ob
k) ⊆ ∪m=1,...,nj

o
Ujm.

Since P(P ob
k) ⊆ Ujk ⊆ ∪m=1,...,nj

o
Ujm, j ∈ L holds for any of the attack types NEO, PRA,

or AO, thus we have P(P ob
k) ⊆ (∪k=1,...,nA

o
UAk)

⋂
(∪m=1,...,nj

o
Ujm) for any of the attack types

NEO, PRA, or AO.

To calculate (∪k=1,...,nA
o
UAk)

⋂
(∪m=1,...,nj

o
Ujm), which is equivalent to⋃

k′=1,...,nA
o

(UAk′
⋂

(∪k=1,...,nj
o
Ujk)),

Agent A approximates the set UAk′
⋂
(∪k=1,...,nj

o
Ujk) by computing the convex hull of all scan

points whose projections are contained in UAk′
⋂
(∪k=1,...,nj

o
Ujk). Then Agent A computes a

set of half-plane constraints hjk
′

l (x), l = {1, . . . , nhjk′} based on the vertices, where hjk
′

l (x)−
||ajkl ||ζh < 0 describes the corresponding half-plane and nhjk′ is the number of half-planes
forming the convex hull Ujk′ . We define h̄jk′(x) = maxl h

jk′

l (x).

Safe Control

In this subsection, we present the safe vehicle controller based on the unsafe region provided
by the FDII. The kinematic bicycle model [154] adopted in this paper is defined as

164

ϕ̇ẋ
ẏ

 =


v
l
sinψ

v cos (ϕ+ ψ)

v sin (ϕ+ ψ)

 (5.19)

where ϕ is the heading angle between the orientation and the x-axis, (x, y) is the position
of the reference point (at the middle of the front axle, between the front wheels), v is the
forward velocity at the reference point, l is the wheelbase, and ψ is the steering angle.

For implementation, we discretize Eq. 5.19 using forward differencing method with the sample
time dt to obtain

x[t+ 1] =

ϕ[t+ 1]

x[t+ 1]

y[t+ 1]

 = f(x[t],u[t])

=

 ϕ[t] + dtv[t]
l
sinψ[t]

x[t] + dtv[t] cos (ϕ[t] + ψ[t])

y[t] + dtv[t] sin (ϕ[t] + ψ[t])

 (5.20)

where u[t] = (v[t], ψ[t])′.

In order to avoid collision between the vehicle and the unsafe region, we utilize Model
Predictive Control with Discrete-Time Control Barrier Function (MPC-CBF) [155]. The
controller solves the following finite-time optimization problem with prediction horizon T at
each time step

min
u[t:t+T−1]

(x[t+ T]− xr)
TF (x[t+ T]− xr) (5.21a)

+
t+T−1∑
t′=t

(x[t′]− xr)
TQ(x[t′]− xr) + u[t′]TRu[t′]

s.t. h̄jk′(x[t+ 1])− h̄jk′(x[t]) ≥ −γh̄jk′(x[t]),

k′ = 1, . . . , nAo (5.21b)

x[t′ + 1] = f(x[t′],u[t′]), t′ = t, · · · , t+ T − 1 (5.21c)

x[t′] ∈ X, t′ = t, · · · , t+ T − 1 (5.21d)

u[t′] ∈ U, t′ = t, · · · , t+ T − 1 (5.21e)

165

where Eq. (5.21a) means that we would like the vehicle to converge to the midline of the lane
(xr) with minimal control effect, Eq. (5.21b) is the DT-CBF constraints ensuring that the
vehicle avoids the unsafe regions provided by FDII, njo is the number of the occupied areas
of Agent j, Eq. (5.21c) is the system dynamics as shown in Eq. (5.20), Eq. (5.21d) is the
admissible set of system state x (eg. stationary obstacles shown in the default map), and
Eq. (5.21e) is the admissible set of control input u (eg. the upper bounds and lower bounds
of the control inputs).

The optimal solution of Eq. (5.21) is a sequence of control inputs u∗[t], . . . ,u∗[t+T − 1]. The
first element u[t] = u∗[t] will be executed. Since u[t] = u∗[t] satisfies Eq. (5.21b), the vehicle
will not collide with the obstacle at time step t. Then at time step t+ 1, Eq. (5.21) will be
solved based on the new state x[t+ 1]. If FDII provides updated unsafe regions, they will
be incorporated in Eq. (5.21b). This receding horizon control strategy guarantees collision
avoidance between the vehicle and the obstacles.

5.3.2 3D-LiDAR FTC Evaluation

In this section, we evaluate our approach in CARLA [63] simulation environment. We first
evaluate our proposed approach to FDII and obstacle detection under attacks. We then show
that our safe controller ensures that the CARLA vehicle avoids obstacles using the proposed
control strategy.

Augmented LiDAR FDII

We first introduce the simulation settings. We initialize two vehicles, denoted as Agents
A and B, at locations (−54.34, 137.05) and (−34.34, 137.05), respectively. We evaluate our
Augmented LiDAR FDII by simulating four scenarios: attack-free, attack NEO, PRA2 and
PRA3.

We simulate the attack-free scenario as a reference group. As shown in Fig. 5.8a, a pedestrian
spawns at (−42.34, 137.05), 12 meters in front of Agent A.

166

In Attack NEO, the attacker injects false data to create a non-existing obstacle. As shown in
Fig. 5.7a, the false data is injected into Agent A’s LiDAR observation to falsify a cylinder 8

meters in front of agent A with radius 1 meter.

The PRA attacker spoofs LiDAR detection modules to hide obstacles in relay attacked area by
injecting false data between victim agent and obstacles. We simulate this attack by replacing
true measurement with Gaussian noise. In attack PRA2, we use the same basic setting as
the aforementioned attack-free case. In addition, we let the attacker inject false data into
Agent A’s LiDAR observation to hide the pedestrian in the relay attacked area as shown in
Fig. 5.8b. The injected false data, located 8 meters ahead of Agent A, is Gaussian noise
distributed in a cylinder area with 1.3 meters radius.

In the previous PRA2 case, the cylinder area can be partially seen by Agent B. We further
validate our approach on a scenario where the cylinder area is blocked by pedestrian. In
Attack PRA3 case, we set the cylinder area with 0.4 meter radius, shown in Fig. 5.8c.

Finally, we present the simulation results and analyze them by comparing with the reference
attack-free scenario. We list the corresponding point cloud of joint perception of two agents
and the intersection of the occupied area in the second and third row of Fig. 5.8, respectively.

In the attack-free case, agents exchange point cloud data of the intersected area. Both
agents can detect the obstacle and generate bounding boxes to contain those points. Agents
identify occupied area and generate non-empty sets UA and UB with the contained points.
The proposed FDII module takes these information and detects that there is no attack. By
overlapping UA and UB according to agents’ location, FDII further identifies the intersection
shown in Fig. 5.8g as the candidate unsafe region.

In the attack NEO case, a fake obstacle is detected by Agent A annotated in Fig. 5.7b, which
create an erroneous unsafe region. Due to the aforementioned limitation of relay attack, this
fake obstacle can only be seen by Agent A. Therefore with the observation provided by Agent
B, there is no occupied area identified with the points contained, i.e., UB = ∅. The proposed
FDII module detects attack NEO and the obstacle is non-existing. Hence, the unnecessary
unsafe region is removed, shown in Fig. 5.7c.

In attack PRA2 case, both attack signal and the pedestrian can be captured by Agent A
and B respectively. With point cloud from Agent B, Agent A can observe both obstacles

167

(a) Attack NEO: An obstacle
falsified by spoofer is set in
front of Agent A.

(b) Fake obstacle can be de-
tected only by Agent A with
UA ̸= ∅ and UB = ∅.

(c) The FDII module detects
NEO attack. The intersection
of the occupied area UA∩UB =
∅, denoting there is no unsafe
region.

Figure 5.7: FDII simulation settings and results of attack-NEO case

annotated in Fig. 5.8e and generate their corresponding occupied area with UA ̸= ∅ and
UB ̸= ∅. Since some areas affected by injected false data can be observed by Agent B, we
have the P(Obk(xA, SA)) ⊈ UB and P(Obk(xA, SA)) ∩ UB ̸= ∅. The proposed FDII algorithm
detects attack PRA2. By overlapping UA and UB according to agents’ location, FDII further
identifies the intersection shown in Fig. 5.8h as the candidate unsafe region.

In attack PRA3 case, the false data affected area is relatively small as shown in Fig. 5.8f,
and hence the area is fully blocked by the pedestrian from Agent B’s perspective. In this
case, we have the P(Obk(xA, SA)) ⊆ UB and P(Obk(xA, SA)) ∩ UB ≠ ∅. The proposed FDII
algorithm detects attack PRA3. By overlapping UA and UB according to agents’ location,
FDII further identifies the intersection shown in Fig. 5.8i as the candidate unsafe region.

168

(a) Attack-free: a pedestrian
is set between two agents with-
out attack.

(b) Attack PRA2: The attack
signal is set between Agent A
and the pedestrian.

(c) Attack PRA3: The at-
tack signal affects a relatively
smaller area.

(d) Annotated pedestrian can
be detected by both agents
with UA ̸= ∅ and UB ̸= ∅.

(e) Annotated attack signal
is captured by Agent A with
UA ̸= ∅ and UB ̸= ∅.

(f) Annotated attack signal
is captured by Agent A with
UA ̸= ∅ and UB ̸= ∅.

(g) The FDII module detects
no attack. The intersection
of the occupied area UA ∩ UB
identified as an unsafe region.

(h) The FDII module detects
PRA2 attack. The intersec-
tion of the occupied area UA∩
UB identified as an unsafe re-
gion.

(i) The FDII module detects
PRA3 attack. The intersec-
tion of the occupied area UA∩
UB identified as an unsafe re-
gion.

Figure 5.8: Augmented LiDAR FDII simulation settings and results: We demonstrate settings
in the first row, the corresponding point cloud of joint perception of two agents and the
candidate unsafe region in the second and third row, respectively. We list attack-free, PRA2
and PRA3 in the three columns from left to right, respectively.

169

Safe Control

In this case study, we show that our MPC controller ensures the vehicle to be safe. We
consider CARLA vehicle Model-3 as our control object and use (5.20) as the simplified vehicle
model with l = 4 and dt = 0.03. We further take standard feedback linearization approach to
acquire linear model as 

x

y

vx

vy


k+1

=


1 0 0.03 0

0 1 0 0.03

0 0 1 0

0 0 0 1



x

y

vx

vy


k

(5.22)

+


0.0045 0

0 0.0045

1 0

0 1


[
∆vx

∆vy

]
k

, (5.23)

in which vx, vy are velocity component of x-axis and y-axis, respectively, control input
u = [∆vx,∆vy]

T representing the corresponding changes.

We define an MPC controller according to (5.21) with F , Q, and R set to be identical
matrices. We realize our controller with an open-source Python library do-mpc [156], which
calls CasADi [157] and IPOPT [158] for nonlinear programming.

We next present the setting of the case. The vehicle is asked to perform reach-and-avoid task
starting from location (−14.34, 137.05) to (−5.00, 135.25) without entering the unsafe region.
We set the initial state to be [−14.34, 137.05, 0, 0]T and initial guess to be [1, 0]T . Given
the unsafe region detected by FDII module, controller restores the constraints on position
s = [x, y]T as

h(s)1 = [−0.35, 0.94]s− 132.74

h(s)2 = [−0.17,−0.99]s+ 132.5

. . .

h(s)14 = [0.12,−0.99]s− 134.62.

170

Finally, we present the trajectory of the CARLA vehicle controlled by MPC in an urban street.
As shown in Fig. 5.9, the vehicle drives from the location (−14.34, 137.05) to (−5.00, 135.25)
without entering the unsafe region.

Figure 5.9: MPC drove CARLA vehicle from start (−14.34, 137.05) to goal (−5.00, 135.25).
The agent managed to avoid detected unsafe region while tracking the given reference point.

5.4 Conclusion

In this chapter, we studied the problem of safety-critical control for a LiDAR-based system in
the presence of sensor faults and attacks. We considered the class of systems equipped with
a set of sensors for state and environment observations. We proposed a fault tolerant safe
control framework for such systems to estimate their states and synthesize a control signal
with safety guarantee. To obtain an accurate state estimate, we maintain a set of EKFs
computed from different subsets of sensor measurements. For each estimate, we construct a
simulated LiDAR scan based on the state estimates and an a priori known map, and exclude
the state estimates that conflict with LiDAR measurements. When the LiDAR scan deviates
from all of the state estimates, we remove the sector of the scan with the largest deviation. We
proposed a control policy that selects a control input based on the fault tolerant estimate, and
proved safety with a bounded probability using a control barrier certificate. We validated our
proposed method with simulation studies on a UAV delivery system in an urban environment.

Later this chapter presented an approach for leveraging sensor data from neighboring vehicles
to detect LiDAR spoofing attacks on autonomous vehicles. In our approach, vehicles exchange
LiDAR scan data and identify spoofing attacks by checking for disparities between the detected

171

obstacles under each scan. We further develop a decision tree to differentiate between non-
existing obstacle, physical removal, and adversarial object attacks. We then construct an
estimate of the unsafe region based on the joint scan data, and propose a control policy that
avoids the unsafe region. We validated our framework using the CARLA simulation platform
and showed that it can detect and identify LiDAR attacks as well as guarantee safe driving.

172

Algorithm 8 LiDAR Scan Reconstruction
1: Input: State estimate x̂i, point-cloud mapM
2: Parameters: Resolution of the LiDAR scan cr, maximum LiDAR range rmax.
3: Output: Estimated LiDAR Observation O(x̂i,M)
4: Init: Set x̂i as the center of scan SM, set lrk ← rmax. Separate the scan equally into 2π

cr
sectors Sk with corresponding angle lak.

5: Translate points mj ∈M into polar coordinate with the origin x̂i, and represent it with
a tuple (mr

j ,m
a
i).

6: for mj ∈M and k ∈ [0, cr] do
7: if mj ∈ Sk and mr

j ≤ lrk then
8: lrk ← pri
9: end if

10: end for
11: for k s.t. lrk = rmax do
12: lrk ← NaN
13: end for
14: Reconstruct SM = {(lrk, lak)}
15: Return O(x̂i,M) = O(x̂i, SM)

Algorithm 9 FT-LiDAR Estimation
1: Input: State estimation x̂, number of sector nj, MapM and LiDAR scan S
2: Output: rj, cj
3: Init: Equally separate scan S into nj sectors cj ∈ S
4: for cj ∈ S do
5: Scan Reconstruction Oj(x̂,M\cj)
6: Scan Reconstruction Oj(x, S\cj)
7: Compute njs the number of points in S\cj.
8: Compute r̃j = Oj(x̂,M\cj)⊖Oj(x, S\cj)
9: Compute ζjs = njs − Ls(rj)

10: if ζjs ≤ ζ̄s then return r̃j, cj
11: end if
12: end for

173

Algorithm 10 Fault Tolerant Control
1: Init: Ia ← ∅ and Ωi∈I\Ia := {uo : (uo − ui)T (uo − ui) ≤ ξ}
2: Maintain nl EKFs for each sensor to estimate state x̂i, i ∈ Il = {1, 2, . . . , nl}.
3: Compute control input ui := π(x̂i).
4: if control input u ∈

⋂
i∈I\Ia Ωi then

5: set û = 0 and uo = u+ û
6: else ▷ STEP 1
7: Compute control input û such that uo := u+ û is the solution to the following problem.

min
uo

J(x̂i, uo) s.t. uo ∈ ∩i∈I\IaΩi (5.17)

8: if no such uo can be found then ▷ STEP 2
9: Perform FT-LiDAR Estimation (Alg. 9).

10: Exclude false sensors into Ia by criteria I and II.
11: Compute û by solving (5.17).
12: if no such uo can be found then ▷ STEP 3
13: for u /∈

⋂
i∈I\Ia Ωi do

14: Compute residue values yi − o(x̂i)
15: Include i into Ia with the largest residue.
16: end for
17: end if
18: end if
19: end if

174

Chapter 6

Conclusion

The rapid proliferation of autonomous systems into diverse and safety-critical domains, ranging
from transportation and medicine to energy and robotics, underscores a paramount imperative:
the formal assurance of their safe and reliable operation. As these systems become increasingly
complex, integrating sophisticated sensors, actuators, and computational algorithms, any
safety violation can precipitate catastrophic consequences, including substantial economic
losses, severe injuries, or even the tragic loss of human lives. This thesis has confronted
the central research challenge pivotal to realizing trustworthy autonomy: the end-to-end
verification of complex autonomous systems.

Autonomous systems are fundamentally cyber-physical systems (CPS), characterized by a
deep symbiosis between computational algorithms and physical components. The verification
challenge, therefore, is not confined to software or hardware in isolation but spans the entire
integrated system. For learning-enabled systems, this challenge is particularly formidable
due to the inherent "black-box" nature of contemporary learning-enabled components. For
real-world applications, autonomous systems encounter faults and cyber attacks, which lead
to safety violations. This thesis approaches verifiably safe autonomy from two complementary
directions: (i) safe control of learning-enabled systems providing formal guarantees, and (ii)
resilient safe control that maintains formal safety guarantees under extreme scenarios such as
sensor faults and cyber-physical attacks.

175

6.1 Advancing Verifiable Safety in Learning-Enabled Sys-

tems (Research Thrust 1)

A primary thrust of this dissertation has been to advance the formal verification of autonomous
systems that integrate learning-enabled components, particularly those utilizing neural
networks for control and decision-making. This endeavor has addressed systems with both
deterministic and stochastic dynamics, consistently aiming for rigorous, provable safety
guarantees.

For deterministic systems, as detailed in Chapter 2, a significant contribution lies in the
development of exact safety conditions for NCBFs employing Rectified Linear Unit (ReLU)
activation functions. Traditional verification methods often falter due to the non-differentiable
nature of ReLU functions at certain points. By leveraging a generalization of Nagumo’s
theorem for proving invariance of sets with non-smooth boundaries, this work provides a
sound theoretical basis for verifying such NCBFs. This theoretical advancement is com-
plemented by a novel verification algorithm that exploits the piecewise-linear structure of
ReLU networks, decomposing the NCBF into a collection of hyperplanes (differentiable
segments) and hinges (non-differentiable intersections). To manage computational complexity,
this verification strategically focuses on the boundary of the safe region. Furthermore, a
VNN-based (Verification of Neural Networks) searching algorithm, utilizing Interval Bound
Propagation (IBP) and linear relaxation, was introduced to efficiently identify these critical
boundary hyperplanes and hinges.

Recognizing the computational demands of verifying each hyperplanes, the Synthesis with
Efficient Exact Verification (SEEV) framework was proposed. SEEV integrates two key inno-
vations: a training procedure incorporating a novel regularizer that penalizes the dissimilarity
of activation patterns along the NCBF boundary, thereby reducing the number of hyperplanes
to be verified; and an efficient verification algorithm employing a neural breadth-first search
for enumerating boundary segments. This co-design of synthesis and verification, where safety
counterexamples identified by the verifier are incorporated into the training dataset, has
demonstrated significant improvements in verification efficiency and reliability. Experimental
results shows substantial runtime reductions compared to state-of-the-art SMT-based methods
like dReal and Z3, particularly for complex network architectures and higher-dimensional
systems.

176

For stochastic systems, Chapter 3 extended the pursuit of verifiable safety by introducing
Stochastic Neural Control Barrier Functions (SNCBFs). For smooth SNCBFs with twice-
differentiable activation functions, verification was formulated as nonlinear programs solvable
by SMT solvers. A step forward was the introduction of ReLU SNCBFs, for which sufficient
safety conditions were derived using Tanaka’s formula, again navigating the challenges of
non-smoothness. Practical algorithms leveraging the piecewise linearity of ReLU networks
were developed for efficient verification.

By directly addressing and improving the efficiency and scalability of verification techniques,
this work makes tangible progress towards making end-to-end verification feasible for the
increasingly complex learning-enabled systems envisioned for future autonomous applications.
Futrue work could focus on the following directions:

• Enhanced Scalability for Verification: Developing novel algorithms, including
advanced search techniques (e.g., refined branch-and-bound methods), to drastically
improve the scalability of NCBF and SNCBF verification.

• Verification for Diverse Neural Architectures: Extending exact verification of
NCBFs and SNCBFs to other activation functions (e.g., softplus, GELU) and network
architectures (e.g., physical informed neural network) that are increasingly used in
perception and control pipelines.

6.2 Enhancing Resilient Safe Control in Adversarial En-

vironments (Research Thrust 2)

Chapter 4 addressed low-dimensional sensor faults and attacks, proposing High-Order Stochas-
tic Control Barrier Functions (HOSCBFs) and Fault-Tolerant SCBFs (FT-SCBFs) tailored
for systems with high relative degrees. These formulations are designed to ensure finite-time
safety even when sensor readings are compromised. The feasibility of these FT-SCBFs, par-
ticularly those with high relative degrees, was rigorously established through Sum-of-Squares
(SOS)-based verification schemes. The composition of HOSCBFs with Control Lyapunov
Functions (CLFs) provides joint guarantees on both safety and stability under sensor fault
conditions, ensuring that the system not only avoids unsafe regions but also progresses

177

towards its operational objectives. Recognizing the expressive power of neural networks, this
work further introduced Fault-Tolerant Neural Control Barrier Functions (FT-NCBFs) for
robotic systems. This involved deriving the necessary and sufficient conditions for FT-NCBFs
to guarantee safety and developing a data-driven methodology to learn such FT-NCBFs by
minimizing a loss function constructed from these formal conditions.

Chapter 5 shifted focus to the unique challenges posed by LiDAR perception attacks, which
can critically undermine the environmental awareness of autonomous systems. For 2D-LiDAR
systems, a fault-tolerant state estimation algorithm was developed, capable of reconstructing
simulated scans from map data and state estimates to detect and remove false sensor inputs,
including spoofed LiDAR measurements. This was coupled with a fault-tolerant safe control
design using control barrier certificates, where SOS programs were employed to compute
these certificates and verify safety constraints despite estimation errors induced by noise
or attacks. The framework was validated on a UAV delivery system, which successfully
avoided obstacles under attack conditions when using the synthesized control law, unlike
baseline methods. For 3D-LiDAR systems, prevalent in autonomous vehicles (AVs), a novel
safe control system was proposed that leverages cooperative perception, using point cloud
data from neighboring vehicles. This system incorporates a sophisticated Fault Detection,
Identification, and Isolation (FDII) module to detect, classify, and mitigate various LiDAR
spoofing attacks, subsequently updating the unsafe region for the vehicle’s planner. The
correctness of this FDII module was analyzed, and its ability to accurately identify attack
types and reconstruct the true unsafe region was validated through extensive simulations in
the CARLA environment. The integrated system demonstrated successful navigation to a
target while avoiding obstacles under attack.

This research thrust significantly broadens the scope of end-to-end verification by explicitly ac-
counting for the imperfections and adversarial pressures characteristic of real-world operation.
It demonstrates that verifiable safety is not limited to idealized, benign environments but can
be systematically extended to systems facing component failures and malicious interference.
A key element enabling this extension is the critical role of robust state estimation and so-
phisticated fault/attack detection mechanisms, such as the FDII module. These components
ensure that the control loop operates on reliable or appropriately corrected information,
making the subsequent safety guarantees meaningful and effective. Future work could explore
the online adaptation of these safety mechanisms, allowing systems to dynamically adjust

178

their safety protocols in response to evolving threats or faults, as well as bridge the gap
between simulation and real-world deployment.

• Adaptive and Online Verifiable Resilience: Moving beyond pre-defined fault or
attack patterns to develop learning-enabled systems that can verifiably adapt their
safety mechanisms online in response to novel or evolving faults and attacks. This
would involve integrating online learning, anomaly detection, and rapid re-verification
or robustification techniques.

• Bridging Simulation-to-Real Gap with Formal Methods: Investigating how
formal verification techniques developed in simulation can provide stronger guarantees
when controllers are deployed on physical hardware, explicitly accounting for model un-
certainties, sensor noise characteristics, and hardware limitations within the verification
framework.

179

References

[1] D. P. Watson and D. H. Scheidt, “Autonomous systems,” Johns Hopkins APL technical
digest, vol. 26, no. 4, pp. 368–376, 2005.

[2] R. Cheng, G. Orosz, R. M. Murray, and J. W. Burdick, “End-to-end safe reinforcement
learning through barrier functions for safety-critical continuous control tasks,” in
Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, no. 01, 2019, pp.
3387–3395.

[3] A. M. Wyglinski, X. Huang, T. Padir, L. Lai, T. R. Eisenbarth, and K. Venkatasubra-
manian, “Security of autonomous systems employing embedded computing and sensors,”
IEEE micro, vol. 33, no. 1, pp. 80–86, 2013.

[4] J. C. Knight, “Safety critical systems: Challenges and directions,” in 24th International
Conference on Software Engineering, 2002, pp. 547–550.

[5] W. Schwarting, J. Alonso-Mora, and D. Rus, “Planning and decision-making for
autonomous vehicles,” Annual Review of Control, Robotics, and Autonomous Systems,
vol. 1, pp. 187–210, 2018.

[6] Department of Homeland Security Cyber-Physical Systems Page, Department
of Homeland Security, Jan 2022, [Online] Available: https://www.dhs.gov/
science-and-technology/cpssec [Accessed: Jan 2022].

[7] C. Dawson, B. Lowenkamp, D. Goff, and C. Fan, “Learning safe, generalizable perception-
based hybrid control with certificates,” IEEE Robotics and Automation Letters, vol. 7,
no. 2, pp. 1904–1911, 2022.

[8] A. D. Ames, S. Coogan, M. Egerstedt, G. Notomista, K. Sreenath, and P. Tabuada,
“Control barrier functions: Theory and applications,” in 2019 18th European control
conference (ECC). IEEE, 2019, pp. 3420–3431.

[9] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-jacobi reachability: A
brief overview and recent advances,” in 2017 IEEE 56th Annual Conference on Decision
and Control (CDC). IEEE, 2017, pp. 2242–2253.

180

https://www.dhs.gov/science-and-technology/cpssec
https://www.dhs.gov/science-and-technology/cpssec

[10] M. Tayal, A. Singh, S. Kolathaya, and S. Bansal, “A physics-informed machine learn-
ing framework for safe and optimal control of autonomous systems,” arXiv preprint
arXiv:2502.11057, 2025.

[11] J. J. Choi, D. Lee, K. Sreenath, C. J. Tomlin, and S. L. Herbert, “Robust control
barrier–value functions for safety-critical control,” in 2021 60th IEEE Conference on
Decision and Control (CDC). IEEE, 2021, pp. 6814–6821.

[12] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case and stochastic
safety verification using barrier certificates,” IEEE Transactions on Automatic Control,
vol. 52, no. 8, pp. 1415–1428, 2007.

[13] T. Koller, F. Berkenkamp, M. Turchetta, and A. Krause, “Learning-based model
predictive control for safe exploration,” in 2018 IEEE Conference on Decision and
Control (CDC), 2018, pp. 6059–6066.

[14] K. Lesser and M. Oishi, “Finite state approximation for verification of partially
observable stochastic hybrid systems,” in Proceedings of the 18th International
Conference on Hybrid Systems: Computation and Control, ser. HSCC ’15. New York,
NY, USA: Association for Computing Machinery, 2015, p. 159–168. [Online]. Available:
https://doi.org/10.1145/2728606.2728632

[15] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based quadratic
programs with application to adaptive cruise control,” in 53rd IEEE Conference on
Decision and Control. IEEE, 2014, pp. 6271–6278.

[16] C. Dawson, S. Gao, and C. Fan, “Safe control with learned certificates: A survey of
neural Lyapunov, barrier, and contraction methods for robotics and control,” IEEE
Transactions on Robotics, 2023.

[17] P. Jagtap, S. Soudjani, and M. Zamani, “Formal synthesis of stochastic systems via
control barrier certificates,” IEEE Transactions on Automatic Control, vol. 66, no. 7,
pp. 3097–3110, 2020.

[18] A. Clark, “Verification and synthesis of control barrier functions,” in 2021 60th IEEE
Conference on Decision and Control (CDC). IEEE, 2021, pp. 6105–6112.

181

https://doi.org/10.1145/2728606.2728632

[19] N. Jahanshahi, P. Jagtap, and M. Zamani, “Synthesis of partially observed jump-
diffusion systems via control barrier functions,” IEEE Control Systems Letters, vol. 5,
no. 1, pp. 253–258, 2020.

[20] W. Xiao and C. Belta, “Control barrier functions for systems with high relative degree,”
in 2019 IEEE 58th conference on decision and control (CDC). IEEE, 2019, pp. 474–479.

[21] H. Dai and F. Permenter, “Convex synthesis and verification of control-Lyapunov and
barrier functions with input constraints,” arXiv preprint arXiv:2210.00629, 2022.

[22] S. Liu, C. Liu, and J. Dolan, “Safe control under input limits with neural control barrier
functions,” in Conference on Robot Learning. PMLR, 2023, pp. 1970–1980.

[23] C. Dawson, Z. Qin, S. Gao, and C. Fan, “Safe nonlinear control using robust neural
Lyapunov-barrier functions,” in Conference on Robot Learning. PMLR, 2022, pp.
1724–1735.

[24] D. R. Agrawal and D. Panagou, “Safe control synthesis via input constrained control
barrier functions,” in 2021 60th IEEE Conference on Decision and Control (CDC).
IEEE, 2021, pp. 6113–6118.

[25] A. Clark, “A semi-algebraic framework for verification and synthesis of control barrier
functions,” IEEE Transactions on Automatic Control, 2024.

[26] S. Kang, Y. Chen, H. Yang, and M. Pavone, “Verification and synthesis of robust control
barrier functions: Multilevel polynomial optimization and semidefinite relaxation,” in
2023 62nd IEEE Conference on Decision and Control (CDC). IEEE, 2023, pp. 8215–
8222.

[27] H. Dai and F. Permenter, “Convex synthesis and verification of control-lyapunov and
barrier functions with input constraints,” in 2023 American Control Conference (ACC).
IEEE, 2023, pp. 4116–4123.

[28] A. Tampuu, T. Matiisen, M. Semikin, D. Fishman, and N. Muhammad, “A survey of
end-to-end driving: Architectures and training methods,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 33, no. 4, pp. 1364–1384, 2020.

[29] M. Raissi, P. Perdikaris, and G. E. Karniadakis, “Physics-informed neural networks: A
deep learning framework for solving forward and inverse problems involving nonlinear

182

partial differential equations,” Journal of Computational Physics, vol. 378, pp. 686–707,
2019.

[30] J. C. B. Gamboa, “Deep learning for time-series analysis,” arXiv preprint
arXiv:1701.01887, 2017.

[31] L. Brunke, M. Greeff, A. W. Hall, Z. Yuan, S. Zhou, J. Panerati, and A. P. Schoellig,
“Safe learning in robotics: From learning-based control to safe reinforcement learning,”
Annual Review of Control, Robotics, and Autonomous Systems, vol. 5, pp. 411–444,
2022.

[32] T. Westenbroek, A. Agrawal, F. Castaneda, S. S. Sastry, and K. Sreenath, “Combin-
ing model-based design and model-free policy optimization to learn safe, stabilizing
controllers,” IFAC-PapersOnLine, vol. 54, no. 5, pp. 19–24, 2021.

[33] Y. Chow, O. Nachum, A. Faust, E. Duenez-Guzman, and M. Ghavamzadeh, “Lyapunov-
based safe policy optimization for continuous control,” arXiv preprint arXiv:1901.10031,
2019.

[34] O. So, Z. Serlin, M. Mann, J. Gonzales, K. Rutledge, N. Roy, and C. Fan, “How to train
your neural control barrier function: Learning safety filters for complex input-constrained
systems,” in 2024 IEEE International Conference on Robotics and Automation (ICRA).
IEEE, 2024, pp. 11 532–11 539.

[35] M. Tayal, H. Zhang, P. Jagtap, A. Clark, and S. Kolathaya, “Learning a formally verified
control barrier function in stochastic environment,” arXiv preprint arXiv:2403.19332,
2024.

[36] K. Long, C. Qian, J. Cortés, and N. Atanasov, “Learning barrier functions with memory
for robust safe navigation,” IEEE Robotics and Automation Letters, vol. 6, no. 3, pp.
4931–4938, 2021.

[37] W. Xiao, T.-H. Wang, R. Hasani, M. Chahine, A. Amini, X. Li, and D. Rus, “Barrier-
net: Differentiable control barrier functions for learning of safe robot control,” IEEE
Transactions on Robotics, 2023.

[38] H. Zhao, X. Zeng, T. Chen, Z. Liu, and J. Woodcock, “Learning safe neural network
controllers with barrier certificates,” Formal Aspects of Computing, vol. 33, pp. 437–455,
2021.

183

[39] H. Zhang, J. Wu, Y. Vorobeychik, and A. Clark, “Exact verification of ReLU neural
control barrier functions,” Advances in Neural Information Processing Systems, vol. 36,
2024.

[40] A. Abate, D. Ahmed, A. Edwards, M. Giacobbe, and A. Peruffo, “Fossil: A software
tool for the formal synthesis of Lyapunov functions and barrier certificates using neural
networks,” in Proceedings of the 24th International Conference on Hybrid Systems:
Computation and Control, 2021, pp. 1–11.

[41] A. Edwards, A. Peruffo, and A. Abate, “Fossil 2.0: Formal certificate synthesis for
the verification and control of dynamical models,” in Proceedings of the 27th ACM
International Conference on Hybrid Systems: Computation and Control, 2024, pp. 1–10.

[42] Y. Wang, C. Huang, Z. Wang, Z. Wang, and Q. Zhu, “Design-while-verify: correct-by-
construction control learning with verification in the loop,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference, 2022, pp. 925–930.

[43] H. Zhang, Z. Qin, S. Gao, and A. Clark, “Seev: Synthesis with efficient exact verification
for relu neural barrier functions,” Advances in Neural Information Processing Systems,
vol. 37, pp. 101 367–101 392, 2025.

[44] A. Clark, “Control barrier functions for stochastic systems,” Automatica, vol. 130, p.
109688, 2021.

[45] A. A. Amin and K. M. Hasan, “A review of fault tolerant control systems: advancements
and applications,” Measurement, vol. 143, pp. 58–68, 2019.

[46] J. Jiang and X. Yu, “Fault-tolerant control systems: A comparative study between
active and passive approaches,” Annual Reviews in control, vol. 36, no. 1, pp. 60–72,
2012.

[47] Y. Wang and X. Xu, “Observer-based control barrier functions for safety critical systems,”
in 2022 American Control Conference (ACC). IEEE, 2022, pp. 709–714.

[48] E. Daş and R. M. Murray, “Robust safe control synthesis with disturbance observer-
based control barrier functions,” in 2022 IEEE 61st Conference on Decision and Control
(CDC). IEEE, 2022, pp. 5566–5573.

184

[49] Y. Cheng, P. Zhao, and N. Hovakimyan, “Safe and efficient reinforcement learning using
disturbance-observer-based control barrier functions,” in Learning for Dynamics and
Control Conference. PMLR, 2023, pp. 104–115.

[50] Y. Mo and B. Sinopoli, “False data injection attacks in control systems,” in Preprints
of the 1st workshop on Secure Control Systems, 2010, pp. 1–6.

[51] Y. Liu, P. Ning, and M. K. Reiter, “False data injection attacks against state estimation
in electric power grids,” ACM Transactions on Information and System Security, vol. 14,
no. 1, p. 13, 2011.

[52] I. Punčochář, J. Širokỳ, and M. Šimandl, “Constrained active fault detection and
control,” IEEE Transactions on Automatic Control, vol. 60, no. 1, pp. 253–258, 2014.

[53] Y. Shoukry, P. Nuzzo, A. Puggelli, A. L. Sangiovanni-Vincentelli, S. A. Seshia, and
P. Tabuada, “Secure state estimation for cyber-physical systems under sensor attacks:
A satisfiability modulo theory approach,” IEEE Transactions on Automatic Control,
vol. 62, no. 10, pp. 4917–4932, 2017.

[54] H. Fawzi, P. Tabuada, and S. Diggavi, “Secure estimation and control for cyber-physical
systems under adversarial attacks,” IEEE Transactions on Automatic Control, vol. 59,
no. 6, pp. 1454–1467, 2014.

[55] L. Niu, Z. Li, and A. Clark, “LQG reference tracking with safety and reachability
guarantees under false data injection attacks,” in 2019 American Control Conference
(ACC). IEEE, 2019, pp. 2950–2957.

[56] A. Clark, Z. Li, and H. Zhang, “Control barrier functions for safe CPS under sensor
faults and attacks,” in 2020 59th IEEE Conference on Decision and Control (CDC).
IEEE, 2020, pp. 796–803.

[57] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen, K. Fu, and Z. M.
Mao, “Adversarial sensor attack on LiDAR-based perception in autonomous driving,”
in Proceedings of the 2019 ACM SIGSAC conference on computer and communications
security, 2019, pp. 2267–2281.

[58] Y. Cao, S. H. Bhupathiraju, P. Naghavi, T. Sugawara, Z. M. Mao, and S. Rampazzi,
“You can’t see me: physical removal attacks on LiDAR-based autonomous vehicles
driving frameworks,” arXiv eprint archive, 2022.

185

[59] H. Shin, D. Kim, Y. Kwon, and Y. Kim, “Illusion and dazzle: Adversarial optical channel
exploits against LiDAR for automotive applications,” in International Conference on
Cryptographic Hardware and Embedded Systems. Springer, 2017, pp. 445–467.

[60] Y. Cao, C. Xiao, D. Yang, J. Fang, R. Yang, M. Liu, and B. Li, “Adversarial objects
against LiDAR-based autonomous driving systems,” arXiv preprint arXiv:1907.05418,
2019.

[61] J. Tu, M. Ren, S. Manivasagam, M. Liang, B. Yang, R. Du, F. Cheng, and R. Urtasun,
“Physically realizable adversarial examples for LiDAR object detection,” in Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2020, pp.
13 716–13 725.

[62] Y. Cao, N. Wang, C. Xiao, D. Yang, J. Fang, R. Yang, Q. A. Chen, M. Liu, and B. Li,
“Invisible for both camera and LiDAR: Security of multi-sensor fusion based perception
in autonomous driving under physical-world attacks,” in 2021 IEEE Symposium on
Security and Privacy (SP). IEEE, 2021, pp. 176–194.

[63] A. Dosovitskiy, G. Ros, F. Codevilla, A. Lopez, and V. Koltun, “CARLA: An open
urban driving simulator,” in Conference on robot learning. PMLR, 2017, pp. 1–16.

[64] W. Zhao, T. He, T. Wei, S. Liu, and C. Liu, “Safety index synthesis via sum-of-squares
programming,” arXiv preprint arXiv:2209.09134, 2022.

[65] M. Schneeberger, F. Dörfler, and S. Mastellone, “Sos construction of compatible control
lyapunov and barrier functions,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 10 428–10 434,
2023.

[66] F. Berkenkamp, M. Turchetta, A. Schoellig, and A. Krause, “Safe model-based reinforce-
ment learning with stability guarantees,” Advances in Neural Information Processing
Systems, vol. 30, 2017.

[67] Z. Qin, K. Zhang, Y. Chen, J. Chen, and C. Fan, “Learning safe multi-agent control
with decentralized neural barrier certificates,” arXiv preprint arXiv:2101.05436, 2021.

[68] Z. Qin, T.-W. Weng, and S. Gao, “Quantifying safety of learning-based self-driving
control using almost-barrier functions,” in 2022 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). IEEE, 2022, pp. 12 903–12 910.

186

[69] H. Zhao, X. Zeng, T. Chen, and Z. Liu, “Synthesizing barrier certificates using neural
networks,” in Proceedings of the 23rd international conference on hybrid systems:
Computation and control, 2020, pp. 1–11.

[70] A. Abate, D. Ahmed, M. Giacobbe, and A. Peruffo, “Formal synthesis of lyapunov
neural networks,” IEEE Control Systems Letters, vol. 5, no. 3, pp. 773–778, 2020.

[71] Q. Zhao, X. Chen, Z. Zhao, Y. Zhang, E. Tang, and X. Li, “Verifying neural network
controlled systems using neural networks,” in 25th ACM International Conference on
Hybrid Systems: Computation and Control, 2022, pp. 1–11.

[72] K. Scheibler, S. Kupferschmid, and B. Becker, “Recent improvements in the SMT solver
iSAT.” MBMV, vol. 13, pp. 231–241, 2013.

[73] W. Xiang, H.-D. Tran, and T. T. Johnson, “Output reachable set estimation and
verification for multilayer neural networks,” IEEE Transactions on Neural Networks
and Learning Systems, vol. 29, no. 11, pp. 5777–5783, 2018.

[74] M. Sha, X. Chen, Y. Ji, Q. Zhao, Z. Yang, W. Lin, E. Tang, Q. Chen, and X. Li,
“Synthesizing barrier certificates of neural network controlled continuous systems via
approximations,” in 2021 58th ACM/IEEE Design Automation Conference (DAC).
IEEE, 2021, pp. 631–636.

[75] C. Ferrari, M. N. Muller, N. Jovanovic, and M. Vechev, “Complete verification via
multi-neuron relaxation guided branch-and-bound,” arXiv preprint arXiv:2205.00263,
2022.

[76] P. Henriksen and A. Lomuscio, “Deepsplit: An efficient splitting method for neural
network verification via indirect effect analysis.” in IJCAI, 2021, pp. 2549–2555.

[77] H. Zhang, S. Wang, K. Xu, L. Li, B. Li, S. Jana, C.-J. Hsieh, and J. Z. Kolter, “General
cutting planes for bound-propagation-based neural network verification,” Advances in
Neural Information Processing Systems, vol. 35, pp. 1656–1670, 2022.

[78] G. Katz, C. Barrett, D. L. Dill, K. Julian, and M. J. Kochenderfer, “Reluplex: An
efficient SMT solver for verifying deep neural networks,” in Computer Aided Verification:
29th International Conference, CAV 2017, Heidelberg, Germany, July 24-28, 2017,
Proceedings, Part I 30. Springer, 2017, pp. 97–117.

187

[79] G. Katz, D. A. Huang, D. Ibeling, K. Julian, C. Lazarus, R. Lim, P. Shah, S. Thakoor,
H. Wu, A. Zeljić et al., “The Marabou framework for verification and analysis of deep
neural networks,” in Computer Aided Verification: 31st International Conference, CAV
2019, New York City, NY, USA, July 15-18, 2019, Proceedings, Part I 31. Springer,
2019, pp. 443–452.

[80] F. B. Mathiesen, S. C. Calvert, and L. Laurenti, “Safety certification for stochastic
systems via neural barrier functions,” IEEE Control Systems Letters, vol. 7, pp. 973–978,
2022.

[81] R. Mazouz, K. Muvvala, A. Ratheesh Babu, L. Laurenti, and M. Lahijanian, “Safety
guarantees for neural network dynamic systems via stochastic barrier functions,” Ad-
vances in Neural Information Processing Systems, vol. 35, pp. 9672–9686, 2022.

[82] H. Zhang, T.-W. Weng, P.-Y. Chen, C.-J. Hsieh, and L. Daniel, “Efficient neural
network robustness certification with general activation functions,” Advances in Neural
Information Processing Systems, vol. 31, pp. 4939–4948, 2018. [Online]. Available:
https://arxiv.org/pdf/1811.00866.pdf

[83] K. Xu, Z. Shi, H. Zhang, Y. Wang, K.-W. Chang, M. Huang, B. Kailkhura, X. Lin,
and C.-J. Hsieh, “Automatic perturbation analysis for scalable certified robustness and
beyond,” Advances in Neural Information Processing Systems, vol. 33, pp. 1129–1141,
2020.

[84] H. Salman, G. Yang, H. Zhang, C.-J. Hsieh, and P. Zhang, “A convex relaxation barrier
to tight robustness verification of neural networks,” Advances in Neural Information
Processing Systems, vol. 32, pp. 9835–9846, 2019.

[85] K. Xu, H. Zhang, S. Wang, Y. Wang, S. Jana, X. Lin, and C.-J. Hsieh, “Fast and
Complete: Enabling complete neural network verification with rapid and massively
parallel incomplete verifiers,” in International Conference on Learning Representations,
2021. [Online]. Available: https://openreview.net/forum?id=nVZtXBI6LNn

[86] S. Wang, H. Zhang, K. Xu, X. Lin, S. Jana, C.-J. Hsieh, and J. Z. Kolter, “Beta-
CROWN: Efficient bound propagation with per-neuron split constraints for complete
and incomplete neural network verification,” Advances in Neural Information Processing
Systems, vol. 34, 2021.

188

https://arxiv.org/pdf/1811.00866.pdf
https://openreview.net/forum?id=nVZtXBI6LNn

[87] H. Zhang, S. Wang, K. Xu, Y. Wang, S. Jana, C.-J. Hsieh, and Z. Kolter, “A branch and
bound framework for stronger adversarial attacks of ReLU networks,” in Proceedings
of the 39th International Conference on Machine Learning, vol. 162, 2022, pp. 26 591–
26 604.

[88] A. Edwards, A. Peruffo, and A. Abate, “Fossil 2.0: Formal certificate synthesis for the
verification and control of dynamical models,” arXiv preprint arXiv:2311.09793, 2023.

[89] O. So, Z. Serlin, M. Mann, J. Gonzales, K. Rutledge, N. Roy, and C. Fan, “How to
train your neural control barrier function: Learning safety filters for complex input-
constrained systems,” arXiv preprint arXiv:2310.15478, 2023.

[90] W. Zhao, T. He, T. Wei, S. Liu, and C. Liu, “Safety index synthesis via sum-of-squares
programming,” in 2023 American Control Conference (ACC). IEEE, 2023, pp. 732–737.

[91] X. Wang, L. Knoedler, F. B. Mathiesen, and J. Alonso-Mora, “Simultaneous syn-
thesis and verification of neural control barrier functions through branch-and-bound
verification-in-the-loop training,” in 2024 European Control Conference (ECC). IEEE,
2024, pp. 571–578.

[92] A. Peruffo, D. Ahmed, and A. Abate, “Automated and formal synthesis of neural barrier
certificates for dynamical models,” in Tools and Algorithms for the Construction and
Analysis of Systems. Springer International Publishing, 2021, pp. 370–388.

[93] M. Anand and M. Zamani, “Formally verified neural network control barrier certificates
for unknown systems,” IFAC-PapersOnLine, vol. 56, no. 2, pp. 2431–2436, 2023.

[94] F. Blanchini and S. Miani, Set-Theoretic Methods in Control. Springer, 2008, vol. 78.

[95] J. Matousek and B. Gärtner, Understanding and Using Linear Programming. Springer
Science & Business Media, 2006.

[96] X. Zeng, W. Lin, Z. Yang, X. Chen, and L. Wang, “Darboux-type barrier certificates for
safety verification of nonlinear hybrid systems,” in Proceedings of the 13th International
Conference on Embedded Software, 2016, pp. 1–10.

[97] A. J. Barry, A. Majumdar, and R. Tedrake, “Safety verification of reactive controllers
for uav flight in cluttered environments using barrier certificates,” in 2012 IEEE
International Conference on Robotics and Automation. IEEE, 2012, pp. 484–490.

189

[98] L. E. Dubins, “On curves of minimal length with a constraint on average curvature,
and with prescribed initial and terminal positions and tangents,” American Journal of
mathematics, vol. 79, no. 3, pp. 497–516, 1957.

[99] C. Jewison and R. S. Erwin, “A spacecraft benchmark problem for hybrid control and
estimation,” in 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE,
2016, pp. 3300–3305.

[100] S. Gao, S. Kong, and E. M. Clarke, “dreal: An SMT solver for nonlinear theories
over the reals,” in Automated Deduction–CADE-24: 24th International Conference
on Automated Deduction, Lake Placid, NY, USA, June 9-14, 2013. Proceedings 24.
Springer, 2013, pp. 208–214.

[101] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in Tools and Algorithms for
the Construction and Analysis of Systems: 14th International Conference, TACAS 2008,
Held as Part of the Joint European Conferences on Theory and Practice of Software,
ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceedings 14. Springer,
2008, pp. 337–340.

[102] A. Agrawal, B. Amos, S. Barratt, S. Boyd, S. Diamond, and Z. Kolter, “Differentiable
convex optimization layers,” in Advances in Neural Information Processing Systems,
2019.

[103] D. Revuz and M. Yor, Continuous martingales and Brownian motion. Springer Science
& Business Media, 2013, vol. 293.

[104] C. Wang, Y. Meng, S. L. Smith, and J. Liu, “Safety-critical control of stochastic systems
using stochastic control barrier functions,” in 2021 60th IEEE Conference on Decision
and Control (CDC). IEEE, 2021, pp. 5924–5931.

[105] P. A. Parrilo, “Semidefinite programming relaxations for semialgebraic problems,”
Mathematical programming, vol. 96, no. 2, pp. 293–320, 2003.

[106] O. So, A. Clark, and C. Fan, “Almost-sure safety guarantees of stochastic zero-control
barrier functions do not hold,” arXiv preprint arXiv:2312.02430, 2023.

[107] P. Pauli, A. Koch, J. Berberich, P. Kohler, and F. Allgöwer, “Training robust neural
networks using lipschitz bounds,” IEEE Control Systems Letters, vol. 6, pp. 121–126,
2021.

190

[108] L. Ma and K. Khorasani, “Constructive feedforward neural networks using hermite
polynomial activation functions,” IEEE Transactions on Neural Networks, vol. 16, no. 4,
pp. 821–833, 2005.

[109] I. Karatzas and S. Shreve, Brownian motion and stochastic calculus. Springer Science
& Business Media, 1991, vol. 113.

[110] S. J. Russell and P. Norvig, Artificial intelligence: a modern approach. pearson, 2016.

[111] H. Zhang, L. Niu, A. Clark, and R. Poovendran, “Fault tolerant neural control bar-
rier functions for robotic systems under sensor faults and attacks,” in 2024 IEEE
International Conference on Robotics and Automation (ICRA). IEEE, 2024, pp.
9901–9907.

[112] M. Blanke, M. Kinnaert, J. Lunze, M. Staroswiecki, and J. Schröder, Diagnosis and
Fault-Tolerant Control. Springer, 2006, vol. 2.

[113] Z. Chen, Y. Cao, S. X. Ding, K. Zhang, T. Koenings, T. Peng, C. Yang, and W. Gui, “A
distributed canonical correlation analysis-based fault detection method for plant-wide
process monitoring,” IEEE Transactions on Industrial Informatics, vol. 15, no. 5, pp.
2710–2720, 2019.

[114] L. Li, H. Luo, S. X. Ding, Y. Yang, and K. Peng, “Performance-based fault detection
and fault-tolerant control for automatic control systems,” Automatica, vol. 99, pp.
308–316, 2019.

[115] A. M. Bardawily, M. Abdel-Geliel, M. Tamazin, and A. Nasser, “Sensors fault estimation,
isolation and detection using MIMO extended Kalman filter for industrial applications,”
in 2017 10th international conference on electrical and electronics engineering (ELECO).
IEEE, 2017, pp. 944–948.

[116] J.-S. Wang and G.-H. Yang, “Data-driven compensation method for sensor drift faults
in digital PID systems with unknown dynamics,” Journal of Process Control, vol. 65,
pp. 15–33, 2018.

[117] D. Jung and E. Frisk, “Residual selection for fault detection and isolation using convex
optimization,” Automatica, vol. 97, pp. 143–149, 2018.

191

[118] J. Wang, C. Yang, H. Shen, J. Cao, and L. Rutkowski, “Sliding-mode control for
slow-sampling singularly perturbed systems subject to markov jump parameters,” IEEE
Transactions on Systems, Man, and Cybernetics: Systems, vol. 51, no. 12, pp. 7579–7586,
2020.

[119] Y. Yang, F. Chen, J. Lang, X. Chen, and J. Wang, “Sliding mode control of persistent
dwell-time switched systems with random data dropouts,” Applied Mathematics and
Computation, vol. 400, p. 126087, 2021.

[120] Y.-A. Liu, S. Tang, Y. Liu, Q. Kong, and J. Wang, “Extended dissipative sliding mode
control for nonlinear networked control systems via event-triggered mechanism with
random uncertain measurement,” Applied Mathematics and Computation, vol. 396, p.
125901, 2021.

[121] H. Yang, Y. Jiang, and S. Yin, “Fault-tolerant control of time-delay Markov jump
systems with Ito stochastic process and output disturbance based on sliding mode
observer,” IEEE Transactions on Industrial Informatics, vol. 14, no. 12, pp. 5299–5307,
2018.

[122] H. Li, H. Gao, P. Shi, and X. Zhao, “Fault-tolerant control of Markovian jump stochastic
systems via the augmented sliding mode observer approach,” Automatica, vol. 50, no. 7,
pp. 1825–1834, 2014.

[123] H. Yang, C. Huang, B. Jiang, and M. M. Polycarpou, “Fault estimation and accom-
modation of interconnected systems: a separation principle,” IEEE Transactions on
Cybernetics, vol. 49, no. 12, pp. 4103–4116, 2018.

[124] Q. Zhao and J. Jiang, “Reliable state feedback control system design against actuator
failures,” Automatica, vol. 34, no. 10, pp. 1267–1272, 1998.

[125] X. Yu and Y. Zhang, “Design of passive fault-tolerant flight controller against actuator
failures,” Chinese Journal of Aeronautics, vol. 28, no. 1, pp. 180–190, 2015.

[126] Z. Li, L. Niu, and A. Clark, “LQG reference tracking with safety and reachability guar-
antees under unknown false data injection attacks,” IEEE Transactions on Automatic
Control, pp. 1–1, 2022.

[127] H. Heuser, Lehrbuch der Analysis. Springer-Verlag, 2013.

192

[128] K. Reif, S. Gunther, E. Yaz, and R. Unbehauen, “Stochastic stability of the continuous-
time extended Kalman filter,” IEE Proceedings-Control Theory and Applications, vol.
147, no. 1, pp. 45–52, 2000.

[129] J. Yin, S. Khoo, Z. Man, and X. Yu, “Finite-time stability and instability of stochastic
nonlinear systems,” Automatica, vol. 47, no. 12, pp. 2671–2677, 2011.

[130] Z. Chen, L. Li, and X. Huang, “Building an autonomous lane keeping simulator using
real-world data and end-to-end learning,” IEEE Intelligent Transportation Systems
Magazine, 2018.

[131] Q. Nguyen and K. Sreenath, “Exponential control barrier functions for enforcing high
relative-degree safety-critical constraints,” in 2016 American Control Conference (ACC).
IEEE, 2016, pp. 322–328.

[132] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly exponentially
stabilizing control Lyapunov functions and hybrid zero dynamics,” IEEE Transactions
on Automatic Control, vol. 59, no. 4, pp. 876–891, 2014.

[133] D. J. Yeong, G. Velasco-Hernandez, J. Barry, and J. Walsh, “Sensor and sensor fusion
technology in autonomous vehicles: A review,” Sensors, vol. 21, no. 6, p. 2140, 2021.

[134] C. Debeunne and D. Vivet, “A review of visual-LiDAR fusion based simultaneous
localization and mapping,” Sensors, vol. 20, no. 7, p. 2068, 2020.

[135] J. Liu and J.-M. Park, “ “Seeing is not always believing”: Detecting perception error
attacks against autonomous vehicles,” IEEE Transactions on Dependable and Secure
Computing, vol. 18, no. 5, pp. 2209–2223, 2021.

[136] S. Wei, L. Ge, W. Yu, G. Chen, K. Pham, E. Blasch, D. Shen, and C. Lu, “Simulation
study of unmanned aerial vehicle communication networks addressing bandwidth
disruptions,” in Sensors and Systems for Space Applications VII, vol. 9085. International
Society for Optics and Photonics, 2014, p. 90850O.

[137] M. Hosseinzadeh, I. Kolmanovsky, S. Baruah, and B. Sinopoli, “Reference Governor-
based fault-tolerant constrained control,” Automatica, vol. 136, p. 110089, 2022.

[138] Y. Cao, C. Xiao, B. Cyr, Y. Zhou, W. Park, S. Rampazzi, Q. A. Chen, K. Fu, and Z. M.
Mao, “Adversarial sensor attack on LiDAR-based perception in autonomous driving,”

193

in ACM SIGSAC conference on Computer and Communications Security, 2019, pp.
2267–2281.

[139] A. Khazraei, H. Pfister, and M. Pajic, “Resiliency of perception-based controllers against
attacks,” https://cpsl.pratt.duke.edu/sites/cpsl.pratt.duke.edu/files/docs/khazraei_
ld4c22.pdf, Tech. Rep.

[140] R. S. Hallyburton, Y. Liu, Y. Cao, Z. M. Mao, and M. Pajic, “Security analysis of
camera-LiDAR fusion against black-box attacks on autonomous vehicles,” arXiv preprint
arXiv:2106.07098, 2021.

[141] D. Davidson, H. Wu, R. Jellinek, V. Singh, and T. Ristenpart, “Controlling UAVs with
sensor input spoofing attacks,” in 10th USENIX workshop on offensive technologies
(WOOT 16), 2016.

[142] R. Matsumura, T. Sugawara, and K. Sakiyama, “A secure LiDAR with AES-based
side-channel fingerprinting,” in 2018 Sixth International Symposium on Computing and
Networking Workshops (CANDARW). IEEE, 2018, pp. 479–482.

[143] D. Suo, J. Moore, M. Boesch, K. Post, and S. E. Sarma, “Location-based schemes for
mitigating cyber threats on connected and automated vehicles: A survey and design
framework,” IEEE Transactions on Intelligent Transportation Systems, 2020.

[144] T. Yang and C. Lv, “A secure sensor fusion framework for connected and automated
vehicles under sensor attacks,” IEEE Internet of Things Journal, 2021.

[145] K. Reif, S. Gunther, E. Yaz, and R. Unbehauen, “Stochastic stability of the discrete-time
extended Kalman filter,” IEEE Transactions on Automatic control, vol. 44, no. 4, pp.
714–728, 1999.

[146] P. Biber and W. Straßer, “The normal distributions transform: A new approach to
laser scan matching,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems, vol. 3. IEEE, 2003, pp. 2743–2748.

[147] A. Cotorruelo, M. Hosseinzadeh, D. R. Ramirez, D. Limon, and E. Garone, “Reference
dependent invariant sets: Sum of squares based computation and applications in
constrained control,” Automatica, vol. 129, p. 109614, 2021.

[148] M. Kojima, S. Kim, and H. Waki, “Sparsity in sums of squares of polynomials,”
Mathematical Programming, vol. 103, pp. 45–62, 2005.

194

https://cpsl.pratt.duke.edu/sites/cpsl.pratt.duke.edu/files/docs/khazraei_ld4c22.pdf
https://cpsl.pratt.duke.edu/sites/cpsl.pratt.duke.edu/files/docs/khazraei_ld4c22.pdf

[149] “Matlab UAV package delivery,” https://www.mathworks.com/help/uav/ug/
uav-package-delivery.html.

[150] X. Qian and C. Ye, “NCC-RANSAC: A fast plane extraction method for 3-D range
data segmentation,” IEEE transactions on cybernetics, vol. 44, no. 12, pp. 2771–2783,
2014.

[151] I. Bogoslavskyi and C. Stachniss, “Efficient online segmentation for sparse 3D laser
scans,” PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science,
vol. 85, no. 1, pp. 41–52, 2017.

[152] G. Zamanakos, L. Tsochatzidis, A. Amanatiadis, and I. Pratikakis, “A comprehensive
survey of LiDAR-based 3D object detection methods with deep learning for autonomous
driving,” Computers & Graphics, vol. 99, pp. 153–181, 2021.

[153] P. Virtanen, R. Gommers, T. E. Oliphant, M. Haberland, T. Reddy, D. Cournapeau,
E. Burovski, P. Peterson, W. Weckesser, J. Bright et al., “Scipy 1.0: fundamental
algorithms for scientific computing in python,” Nature methods, vol. 17, no. 3, pp.
261–272, 2020.

[154] R. Rajamani, Vehicle dynamics and control. Springer Science & Business Media, 2011.

[155] J. Zeng, B. Zhang, and K. Sreenath, “Safety-critical model predictive control with
discrete-time control barrier function,” in 2021 American Control Conference (ACC).
IEEE, 2021, pp. 3882–3889.

[156] S. Lucia, A. Tătulea-Codrean, C. Schoppmeyer, and S. Engell, “Rapid development
of modular and sustainable nonlinear model predictive control solutions,” Control
Engineering Practice, vol. 60, pp. 51–62, 2017.

[157] J. A. Andersson, J. Gillis, G. Horn, J. B. Rawlings, and M. Diehl, “CasADi: a software
framework for nonlinear optimization and optimal control,” Mathematical Programming
Computation, vol. 11, no. 1, pp. 1–36, 2019.

[158] A. Wächter and L. T. Biegler, “On the implementation of an interior-point filter line-
search algorithm for large-scale nonlinear programming,” Mathematical programming,
vol. 106, no. 1, pp. 25–57, 2006.

195

https://www.mathworks.com/help/uav/ug/uav-package-delivery.html
https://www.mathworks.com/help/uav/ug/uav-package-delivery.html

ProQuest Number:

INFORMATION TO ALL USERS
The quality and completeness of this reproduction is dependent on the quality

and completeness of the copy made available to ProQuest.

Distributed by
ProQuest LLC a part of Clarivate ().

Copyright of the Dissertation is held by the Author unless otherwise noted.

This work is protected against unauthorized copying under Title 17,
United States Code and other applicable copyright laws.

This work may be used in accordance with the terms of the Creative Commons license
or other rights statement, as indicated in the copyright statement or in the metadata

associated with this work. Unless otherwise specified in the copyright statement
or the metadata, all rights are reserved by the copyright holder.

ProQuest LLC
789 East Eisenhower Parkway

Ann Arbor, MI 48108 USA

32120769

2025

	List of Figures
	List of Tables
	Acknowledgments
	Abstract
	Chapter Introduction
	Safe Control of Autonomous Systems
	Resilient Safe Control
	Contribution of this Thesis
	Neural CBF for Deterministic Systems
	Neural CBF for Stochastic Systems
	Resilient Safe Control under Low-Dimensional Sensor Faults
	Resilient Safe Control under LiDAR Perception Attacks

	Structure of Thesis

	Chapter Neural Control Barrier Functions For Deterministic Systems
	Related Work
	Verification of NCBFs
	Synthesis of Verifiable Safe Control

	Problem Formulation
	System Model
	Safety and Control Barrier Functions
	Problem Formulation

	Exact Conditions for Safety
	Safety Violation due to Non-differentiability
	ReLU Neural Control Barrier Function
	Generalized Nagumo's Theory for ReLU NCBF

	Decomposition of ReLU NCBF
	VNN-based Search Algorithm
	Neural Breadth-First-Search

	Verification
	Verification of Hyperplanes
	Verification of Hinges
	Efficient Verification

	Experiment
	Experiment Settings
	LiRPA-based Verification Results
	Exact Efficient Verification Results

	NCBF Synthesis with Efficient Exact Verification
	Overall Formulation
	Loss Function Design and NCBF Training
	SEEV Evaluation

	Conclusion

	Chapter Neural Control Barrier Functions For Stochastic Systems
	Preliminaries
	System Model
	Preliminaries on Stochastic Processes
	Stochastic Control Barrier Functions
	Preliminary Results

	Smooth Stochastic Neural Control Barrier Functions
	Smooth SNCBF Verifiable Synthesis
	Smooth SNCBF Verification and Synthesis

	Rectified Linear Unit Stochastic Control Barrier Functions
	Single-Hidden-Layer ReLU Stochastic NCBF
	ReLU SNCBF Verification and Synthesis

	Experiments
	Experiment Settings
	Experiment Results

	Conclusion

	Chapter Resilient Safe Control under Low-Dimensional Sensor Faults
	Related Work
	Preliminaries
	System Model
	Background and Preliminary Results

	Safe Control Under Sensor Faults and Attacks
	Overview of the Approach
	Sensor Fault Pattern Formulation
	Sensor FTC Strategy Definition
	Feasibility Verification

	Joint Safety and Stability Under Sensor Faults and Attacks
	HOSCBF-CLF
	HOSCBF-CLF Construction
	FT-CBF Evaluation

	Fault Tolerant NCBF
	Overview of Proposed Solution
	Synthesis of NCBF
	Synthesis of FT-NCBF
	Safety Guarantee of Proposed Approach
	FT-NCBF Evaluation

	Conclusion

	Chapter Resilient Safe Control under LiDAR Perception Attacks
	Related Work
	Resilient Safe Control of 2D-LiDAR-based Systems
	Preliminaries
	2D LiDAR Observation and Threat Model
	2D-LiDAR Fault Tolerant Safe Control
	Fault-Tolerant Control Barrier Certificate
	2D-LiDAR FTC Evaluation

	Resilient Safe Control of 3D-LiDAR-based Systems
	3D LiDAR Fault Detection and Safe Control
	3D-LiDAR FTC Evaluation

	Conclusion

	Chapter Conclusion
	Advancing Verifiable Safety in Learning-Enabled Systems (Research Thrust 1)
	Enhancing Resilient Safe Control in Adversarial Environments (Research Thrust 2)

	References

